Биология - готовые работы

fig
fig
Электрофорез – это метод разделения веществ в зависимости от их молекулярной массы и заряда [7,9,10].
В последние годы благодаря развитию аналитических методов изучение белков приобретает все возрастающее значение как в химических, биохимических и медицинских исследованиях, так и в клинической практике.
В качестве материала используют химические вещества, органические вещества, белки биологических жидкостей.
Основной задачей работы является изучение понятия электрофореза, раскрытие его принципов и методик, рассмотрение процесса электрофореза на примерах заболевания крови, т.е. лабораторное определение заболевания с дальнейшей их идентификацией, исследование крови как здорового, так и больного человека.
Основной целью является изучение процесса электрофореза при некоторых заболеваниях крови; рассмотрение возможности внесения в школьный курс – метод электрофореза.
Современное состояние биотехнологических исследований в Украине нельзя оценить однозначно. С одной стороны, Украина имеет мощный кадровый научный потенциал, способный решить сложнейших проблемы биотехнологии и создать все необходимые для народа Украины продукты с применением сложнейших и наиболее современных методических подходов (генетики, генетической инженерии, клеточной инженерии). Научные работники Украины только за годы ее независимости разработали несколько конкурентоспособных биотехнологий, которые сегодня уже готовые к внедрению (дрожжи и микроорганизмы надсинтетики аминокислот, антибиотиков, факторов роста; технологии получения лекарства и биотехнологии получения новых пищевых и кормовых препаратов; естественных экологически чистых консервантов; биотехнологии очистки сточных вод и ликвидации антропогенных загрязнений; биотехнологии создания принципиально новых лекарственных препаратов, интерферонов, и т.п.).
Вселенная состоит из живой и неживой материи. Наша планета земля населена огромным количеством разнообразных живых существ, которые совместно с продуктами своей жизнедеятельности составляют биосферу. Представителей живой природы. Начиная от сложных организмов – человека и млекопитающих животных – и кончая простейшими формами жизни – микробами, условно можно разделить на две большие группы: макромир и микромир [1].
Благодаря одомашниванию и примитивной селекции человечество уже в эпоху неолита имело почти все современные продовольственные культуры, многие виды домашнего скота. С развитием промышленной и научной селекции значительно возросла продуктивность растений и животных. Сорт растений и порода стали средствами сельскохозяйственного производства, важными факторами интенсификации растениеводства и животноводства, способствующими переводу их на промышленную основу (например, создание короткостебельных неполегающих сортов зерновых культур, хорошо приспособленных к уборке комбайном; сортов овощных культур для выращивания в теплицах; винограда, томата, приспособленных к машинной уборке; групп крупного рогатого скота - к условиям содержания в животноводческих комплексах). Селекционный процесс отличается непрерывностью, методы его всё время совершенствуются, что дает толчок науке.
К задачам современной селекции относится создание новых и улучшение уже существующих сортов растений, пород животных и штаммов микроорганизмов.
Теоретическая основа селекции - генетика и разрабатываемые ею закономерности наследственности и изменчивости организмов. Эволюционная теория Чарльза Дарвина, законы Грегори Менделя, учения о чистых линиях и мутациях позволили селекционерам разработать методы управления наследственностью растительных и животных организмов. Большую роль в селекционной практике играет гибридологический анализ.
Примитивная селекция растений возникла одновременно с земледелием. Начав возделывать растения, человек стал отбирать, сохранять и размножать лучшие из них. Многие культурные растения возделывались примерно за 10 тысяч лет до нашей эры. Селекционеры древности создали прекрасные сорта плодовых растений, винограда, многие сорта пшеницы, бахчевых культур.
В селекции растений особое значение имеют развитие научных основ отбора и гибридизации, методы создания исходного материала - полиплоидия, экспериментальный мутагенез, гаплоидия, клеточная селекция, хромосомная и генная инженерия, гибридизация протопластов, культура зародышевых и соматических клеток и тканей растений; изучение генетических и физиолого-биохимических основ иммунитета, наследование важнейших количественных и качественных признаков (белка и его аминокислотного состава, жиров, крахмала, сахаров). В современной селекции растений в качестве исходного материала используют естественные и гибридные популяции, самоопыленные линии, искусственные мутанты и полиплоидные формы. Большинство сортов сельскохозяйственных растений создано методом отбора и внутривидовой гибридизации.
Цель работы. Основной целью работы является разработка технологии возделывания озимой пшеницы сорта Московская 56 на производственные цели в Московской области.
Основные задачи работы. Для достижения поставленной цели работы необходимо решить следующие задачи:
1. установить исходные данные для проекта: рассмотреть географическое расположение Московской области, рельеф и почвообразующие породы, климатические условия, почвообразование и его агрономические свойства;
2. изучить биологические свойства озимой пшеницы сорт Московская 56: особенности
Введение
Утверждение о том, что биология сегодня уже достигла вершины своего развития, разгадав все тайны природы, не выдерживает никакой критики. Особенность настоящей науки в том и состоит, что, как только находится ответ на один вопрос, возникают сотни новых. «Вершины» науки, покоренные десять и даже пять лет назад, уже перешли в область истории – но ни в коем случае не устарели, ведь они служат фундаментом для новых достижений. В биологии, как и в любой другой науке, можно проследить историческую преемственность: каждое поколение ученых передает потомкам накопленные знания. Даже если время доказало ошибочность той или иной теории, не стоит полностью отрицать ее вклад в развитие науки. Только изучение пути, по которому человечество пришло к современному этапу развития позволит сделать шаг дальше. Именно поэтому столь актуально изучение истории исследования клеток – возможно, это поможет разгадать их тайны, пока скрытые от нашего разума.
Цель данной работы – проследить историю изучения клетки от ее открытия в XVII веке до новейших достижений века XXI; рассмотреть основные теории и гипотезы, разработанные учеными за 400 лет; изучить, к каким же выводам пришло человечество на сегодняшний день.
Справка по истории изучения и открытия клетки содержится в учебниках по КСЕ, общей биологии и цитологии (в данной работе использованы учебники и учебные пособия следующих авторов: Анисимов А.П., Ярыгин В.Н.). Существует ряд трудов, рассматривающих как изучение клетки в историческом развитии (принадлежащие таким авторам, как Штрабанова С., Кацнельсон З.С., Шпегель Г.Г.), так и статьи, посвященные отдельным теориям.

Предпосылки возникновения клеточной теории: наблюдения А.Левенгука, Р.Гука, Н.Грю и М.Мальпиги; исследования К.Вольфа.
Первый шаг в «микромир», мир, недоступный невооруженному глазу человека, совершил голландец Антони ван Левенгук (1632-1723). Сказать, что он первым построил микроскоп, было бы несправедливо. Еще раньше, в 1590 году, подобный прибор изготовили соотечественники Левенгука Ганс и Захариас Янсены. Свой прибор они назвали «бисерным стеклышком». Великий итальянский ученый Галилео Галилей также занимался совершенствованием увеличительных стекол. Однако лишь Левенгук, рассматривая под микроскопом каплю дождевой воды, увидел в ней огромное количество необычных, очень маленьких животных, имеющих вид палочек, шариков, спиралей… Первые рисунки бактерий были помещены в письме в Лондонское королевское общество в сентябре 1683 года. Этим его исследования не ограничились. 170 писем, которые Левенгук направил в адрес Лондонского королевского общества, содержали подробные описания микроорганизмов (сам ученый называл их animalkula – «зверек»), сложных микроорганизмов, состоящих из множества круглых телец (сегодня мы знаем, что это водоросли из рода вольвокс, которые объединяются в колонии), яиц насекомых… Разумеется, объекты исследования отличались. Но было у них и общее – это были клетки.
Открытие клетки как части многоклеточного организма принадлежит английскому физику Гуку. В своей работе «Микрография» он описывает ход эксперимента: «…перочинным ножом я срезал с гладкой поверхности пробки чрезвычайно тонкую пластинку. Положив ее на черное предметное стекло – так как это была белая пробка – и осветив ее сверху при помощи плосковыпуклой стеклянной линзы, я мог чрезвычайно ясно рассмотреть, что вся она пронизана отверстиями и порами, совершенно как медовые соты, только отверстия были менее правильны» . Так впервые была обнаружена растительная клетка.
Изучению строения растений посвятил всю свою жизнь Н.Грю. В теле растений он различал плотные и рыхлые области. Проводя аналогии, он заметил, что рыхлые ткани подобны пивной пене, а плотные – кружеву или ткани.
В то же время изучением микроскопического строения растений занимается М.Мальпиги. Мальпиги различает в теле растений: пузырьки, или мешочки, часто наполненные жидкостью и окруженные плотной оболочкой; волокна, чрезвычайно мелкие и различаемые только в микроскоп; сосуды. Из последних особое внимание Мальпиги привлекают так называемые спиральные сосуды, которые он называет трахеями, проводя аналогию с дыхательными трубками (трахеями) насекомых. Каждая из перечисленных групп структурных элементов, говорит Мальпиги, «объединяется в растении в отдельные однородные по структуре части тела растения», которые он называет «тканями».
Как можно увидеть из сказанного выше, проведенные в XVII веке исследования показали распространенность «клеточного строения» растений. Однако огромнейшее значение сделанного открытия не было оценено в полной мере. Сначала ученые ошибочно представляли клетки как пустоты в непрерывной массе растительных тканей. Несколько позже Грю и Мальпиги рассматривали стенки клеток как волокна. Именно поэтому они ввели термин «ткань», проводя аналогию с привычной льняной или шерстяной тканью. Исследования микроскопического строения тканей животных и вовсе носили случайный характер и не привели к каким-либо принципиальным открытиям.
Наступивший XVIII век поставил перед биологами иные задачи – основное внимание уделялось систематизации известных видов растений и животных. Однако некоторые успехи в исследовании клетки все же были. Так, К.Вольф заинтересовался зарождением и развитием клеток. Саму постановку проблемы генезиса растительных тканей можно было бы считать большим шагом вперед, однако, разрешена она в этой работе была скорее умозрительно, чем путем точных наблюдений. Вольф считал, что зародыши как у растений, так и у животных, развивается из желатинообразной массы, а клетки возникают подобно пузырькам газа в поднимающемся при брожении тесте. Несмотря на малую обоснованность, эта теория просуществовала достаточно долго и наложила отпечаток на многие более поздние труды.
Открытия XIX века. Клеточная теория Шлейдена и Шванна. Развитие клеточной теории во второй половине XIX - начале XX веков.
Начало XIX века ознаменовалось значительным углублением представлений о клеточном строении растений, что в первую очередь связано с существенными улучшениями в конструкции микроскопа (например, созданием ахроматических линз).
К концу 30-х годов XIX века был сделан ряд важных открытий, и – на их основе – не менее значимых выводов. Ученые были вынуждены взглянуть на клетки по-иному; понять, что предложенное Грю и Мальпиги деление структуры растительного организма на три группы образований – пузырьки (или собственно клетки), волокна и сосуды – не отвечает действительности. Способствовал этому открытый Д.Мольденгауером метод мацерации тканей (то есть обработки их горячей азотной кислотой и другими веществами, в результате чего межклеточное вещество растворяется и ткань распадается на отдельные клетки).
В 1831 году Броуном было открыто ядро клетки. После этого события исследователи начали присматриваться к содержимому клетки, в то время как ранее их интересовала лишь оболочка.
В том же 1831 году ученый Моль доказывает, что даже такие на первый взгляд неклеточные структуры растений, как водоносные трубки, развиваются из клеток.
Весьма интересны достижения Яна Пуркинье с учениками. В то время никто не мог сравниться с ними ни по количеству проведенных опытов, ни по технологии обращения с препаратами. Именно Пуркинье первым предложил способ подкрашивания тканей для более четкого их наблюдения; изобрел способ обработки тканей воском, позволяющий резать их микротомом; сделал первую попытку сфотографировать препарат через окуляр микроскопа.
Именно Пуркинье впервые высказал идею о соответствии зернистой (клеточной) структуры органов животных ясному расчленению на клетки тела растений. В докладе на съезде немецких естествоиспытателей и врачей он привел доказательства факта наличия ядра у животных и растительных клеток. Кроме того, Пуркинье установил, какое большое значение для жизни имеет студенистое полужидкое вещество внутри клеток.
Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором дал описание различных его видов и их клеточного строения.
Клеточная теория была сформулирована немецким зоологом Т.Шванном в 1839 году. Поскольку при создании этой теории Шванн широко пользовался работами ботаника М.Шлейдена, последнего по праву считают соавтором клеточной теории. Исходя из предположения о схожести (гомологичности) растительных и животных клеток, доказываемой одинаковым механизмом их возникновения, Шванн обобщил многочисленные данные в виде теории, согласно которой клетки являются структурной и функциональной основой живых существ.
На осознание значения ядра в клетке Шванна натолкнули исследования Матиаса Шлейдена, у которого в 1838 году вышла работа «Материалы по фитогенезу».
Шлейден, безусловно, ошибался во многом. Так, о внутреннем содержимом клеток он имел явно недостаточно точное и неправильное представление. Он считал, что клеточное ядро находится между листками двойной клеточной оболочки, и не мог разобраться в веществе, находящемся внутри клетки. Шлейден наблюдал цитоплазму, но не подозревал, что она-то собственно и является субстратом жизненных явлений. Он считал ее камедью и допускал возникновение в ней слизистых зерен, превращающихся в ядрышки и клеточные ядра – цитобласты, вокруг которых должна будто бы возникнуть новая клетка. Шлейден проглядел или игнорировал имевшиеся уже в то время в науке указания на процессы, связанные с делением клеток.
Основным недостатком учения Шлейдена и Шванна было то чрезмерное внимание, которое оно уделяло клеточной оболочке, игнорируя живое содержимое клетки (Шванн видел оболочки животных клеток даже там, где их не было).
С середины XIX века учение о клетке оказывается в центре внимания ученых и развивается настолько бурно, что выделяется из биологии, преврщаясь в самостоятельную отрасль науки — цитологию.
В это время принципиально изменяется представление о композиции клетки, на первые план выдвигается изучение протоплазмы и ядра. Если раньше основой клетки считалась оболочка, то теперь ее признают второстепенной частью.
Введение
С давних пор людей интересовали вопросы генетики. Люди давно знали, что дети – будь то люди или звери – похожи на родителей. Разумеется, изначально это знание основывалось не полноценных научных исследованиях, а лишь на наблюдениях, однако часто помогало сделать практический выбор. Например, телят от коровы с хорошими надоями покупали с удовольствием, а от дающей мало молока брать не хотели; котята от кошки-крысоловки тоже пользовались большей популярностью, чем от обычной.
Переход от бытовых представлений к научным произошел относительно недавно – лишь в XIX веке. Из открытий того времени, безусловно, следует отметить сформулированные Грегором Менделем законы генетики, которые легли в основу современной науки. Развитие генетики в России началось несколько позже, в первой четверти XX века. Оно связано с именами таких выдающихся ученых, как Николай Константинович Кольцов, Николай Иванович Вавилов и Юрий Александрович Филипченко. К сожалению, российская (точнее, советская) классическая генетика начиная с 30-х годов XX века подвергалась гонениям, что отбросило нашу страну назад по сравнению с европейскими странами, которые не отказались от проведения исследований.
Лишь в 60-е годы (в то время, как на Западе уже предложена и доказана структура двойной спирали ДНК!) в СССР начинается возрождение генетики.
В связи с тяжелой судьбой советской генетики, большая часть доступной литературы - переиздания исследований 20-х - начала 30-х годов и переводы трудов заграничных исследователей. Примером может служить фундаментальный учебник «Современная генетика» (авторы - Франциско Айала и Джон Кайгер). Однако есть и отечественная литература, например, многочисленные поздние труды Н.П.Дубинина («Молекулярная генетика и действие излучений на наследственность», «Общая генетика» и др., изданные в конце 60-х – начале 70-х годов).
Также разделы, посвященные законам генетики, имеются практически во всех современных учебниках по общей биологии. Велико и число статьей, посвященных жизни и трудам выдающихся ученых, коими, бесспорно, являлись Мендель, Кольцов, Филипченко.
Целью данной работы является изучение основных законов генетики, научные достижений Менделя, Кольцова и Филипченко; раскрытие понятия мутагенеза. В соответствии с целью в работе выделяется 3 главы: общее понятие о науке генетике; законы генетики (открытия Менделя, Кольцова и Филипченко); мутагенез.
Глава I. Общее понятие о науке генетике
Прежде чем приступать к рассмотрению законов генетики, необходимо получить общее представление об этой науке, раскрыть значение некоторых базовых терминов.
Генетика (от греч. génesis - происхождение) - наука о законах наследственности и изменчивости организмов. Важнейшей задачей генетики является разработка методов управления наследственностью и наследственной изменчивостью для получения нужных человеку форм организмов или в целях управления их индивидуальным развитием. Сам термин «генетика» был введен английским ученым Уильямом Бэтсоном (1861 – 1926) в 1906 году.
Наследственность – свойство организмов передавать следующему поколению свои признаки и особенности развития, то есть воспроизводить себе подобных. Каждый вид растений и животных сохраняет в ряду поколений характерные для него черты.
Изменчивость – способность организмов изменять свои признаки и свойства. Изменчивость бывает наследственная и ненаследственная. Наследственная изменчивость связана с изменением генотипа.
Генотип – совокупность наследственных признаков и свойств, полученных особью от родителей, а также новых свойств, появившихся в результате мутаций генов, которых не было у родителей. Ген – это участок молекулы ДНК, биополимер, являющийся элементарной единицей наследственности.
По сути генетика – точная наука, в основе которой лежат методы математической статистики. Математические методы для анализа биологических процессов впервые применил Г.Мендель. За это он получил от своих коллег по Обществу естествоиспытателей шутливое прозвище «наш ботанический математик». Однако от этого подхода отказались в середине XX века в СССР. Достигнув своего апогея и став воистину периодом средневековья в отечественной биологии и медицине, лысенковщина изуродовала и методологию этих наук, изгнав из них в частности математику, и в первую очередь статистику. Как следствие – и сегодня биостатистика в России очень слабо развита. Если в интернетовских поисковых системах сделать запрос по маске "biostat*", то в результате поиска мы получим список из нескольких десятков серверов. Среди них сервера Гарвардского университета, Калифорнийского университета и многих других. Анализ этих серверов показывает, что за рубежом биостатистика составляет основу так называемой Evidence-based medicine - научно доказательной медицины. А вот в России картина совершенно иная. Поэтому у многих людей складывается ошибочное впечатление, что генетика – наука не точная, имеющая математический аппарат, а гуманитарная и весьма абстрактная. Через призму этого заблуждения исследования великих ученых конца XIX-XX вв. воспринимаются совершенно не так, как должны.

Глава II. Основные законы генетики
Эксперименты и выводы Грегора Менделя
Основные законы наследственности были открыты Грегором Менделем (1822-1884), монахом августинского монастыря, жившем в австрийском городе Брюнне (ныне Брно). Примерно с 1856г. он начал экспериментировать с горохом (Pisum sativum), для того чтобы узнать, как передаются по наследству индивидуальные признаки этого организма. Он наблюдал наследование всего лишь одной пары или небольшого числа альтернативных (взаимоисключающих) пар признаков, используя чистые линии, т. е. потомство одного самоопыляющегося растения, в котором сохраняется сходная совокупность генов. Опыты Менделя и по сегодняшним меркам могут служить прекрасным образцом научного исследования, а разработанный им метод генетического анализа – подсчет числа особей каждого класса в потомстве, полученном от определенного типа скрещивания – вплоть до возникновения молекулярной генетики в 50-х годах XX века. Используется этот метод и сегодня.
Кроме разработки замечательной методологии научная гениальность Менделя проявилась в его способности сформулировать теорию, объясняющую данные экспериментов, и поставить эксперименты, подтверждающие эту теорию.
Хотя концепция Менделя была представлена, строго говоря, в качестве гипотезы, в действительности это была завершенная теория. Время показало ее фундаментальную полноту и правильность.
Рассмотрим три закона генетики, которые были сформулированы Менделем и названы в его честь.
1. Правило доминирования, или первый закон: при моногибридном скрещивании все потомство в первом поколении характеризуется единообразием по фенотипу и генотипу.
В одном из опытов Мендель изучал наследование формы семян, скрещивая растения с гладкими и морщинистыми горошинами. Результаты были однозначны: у всех гибридных растений первого поколения (F1) семена оказались гладкими независимо от того, материнским или отцовским было растение с такими семенами. Морщинистость как бы маскировалась доминированием гладкости. Аналогичным образом вели себя все семь признаков, отобранные для исследований: у растений первого поколения проявлялся лишь один из альтернативных признаков. Мендель назвал такие признаки (гладкость семян, их желтый цвет и т.п.) доминантными, а альтернативные – рецессивными.
Обозначив доминантный признак заглавной буквой «А», а рецессивный – строчной «а», запишем этот закон в виде схемы:
Р: АА х аа
G: A A a a
F1: Aа Аа Аа Аа
Позднее ученые открыли механизм неполного доминирования (например, при скрещивании малиновых и белых цветов львиного зева в первом поколении все цветы розовые).
2. Второй закон Менделя формулируется так: при скрещивании гибридов первого поколения их потомство дает расщепление в соотношении 3:1 при полном доминировании и в соотношении 1:2:1 при промежуточном наследовании (неполное доминирование).
Мендель выращивал растения из семян гибридов первого поколения и допускал самоопыление этих растений. В полученном таким образом втором поколении от скрещивания между растениями с гладкими и морщинистыми семенами встречались как гладкие, так и морщинистые горошины. Мендель подсчитал: на 5475 гладких семян пришлось 1850 морщинистых.
Вырастив третье поколение, Мендель заметил, что у растений, выросших из морщинистых семян, семена всегда были морщинистыми. Иначе вели себя растения из гладких семян. Оказалось, что примерно 1/3 из них дает такие же семена, а у 2/3 гладкие и морщинистые семена встречаются в соотношении 3:1. Итак, ½ всех семян (морщинистые и 1/3 гладких) не дают расщепления, остальная же ½ (или 2/3 гладких семян) ведут себя так же, как семена из первого гибридного поколения. Те же результаты были получены для других признаков.
Запишем этот закон схематически:
P: Aa x Aa
G: A a A a
F2: AA Aa Aa aa
AA и Aa – это гладкие семена, а аа – морщинистые. В третьем поколении, соответственно: АА х АА может дать только гладкие семена, Аа х Аа – как гладкие, так и морщинистые, аа х аа – только морщинистые.
7) Нарисуйте графики возбуждения и возбудимости, отметьте фазы
8) Установите последовательность этапов реципроктного акта в первичночувствующем рецепторе
1- Распространение РП к аксонному холмику (4)
2- Формирование РП (3)
3- Генерация ПД (5)
4- Изменение мембранной проницаемости для Na+ (2)
5- Взаимодействие раздражителя с рецепторной клеткой (1)
6- Проведение ПД по нервному волокну (6)
9) Дайте определение понятия «синапс». Перечислите и объясните основные свойства химических синапсов.
10) Установите соответствие:
МЫШЕЧНАЯ ТКАНЬ:
А-поперечно-полосатая
б- гладкая
ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА:
возбудимость:
а)большая
б)меньшая
скорость проведения возбуждения:
а)большая
б)меньшая
латентный период:
а)длительный
б)короткий
сокращения:
а)фазические
б)тонические
11) Нарисуйте графики механизмов пространственной и временной суммации и дайте им объяснение
12) Дайте правильные ответы:
Выделение А-возбуждающего в синаптическую щель приводит к:
1) входу ионов Na+ в клетку
4) деполяризации субсинаптической мембраны
Выделение Б-тормозного медиатора в синаптическую щель приводит к:
3) входу и ионов Cl- в клетку
5) гиперполяризации субсинаптической мембраны
13) Нарисуйте график механизма гиперполяризации. Дайте пояснения, перечислите все виды торможения с этим механизмом.
14) Заполните таблицу «Отделы ствола головного мозга, их структуры и функции»
15) Нарисуйте схемы рефлекторных дуг симпатической, парасимпатической и метасимпатической нервной системы. Отметьте типы нервных волокон, медиаторы и виды рецепторов в эфферентном звене
16) Заполните таблицу «Инкреторный аппарат поджелудочной железы»
Локализация в организме Строение инкреторного аппарата железы гормоны Органы и ткани мишени для гормонов Функции гормонов Регуляция активности железы(нервно-гуморальна)
17) Установите соответствие:
ЗОНА КОРЫ
НАДПОЧЕЧНИКОВ:
1-клубочковая
2-пучковая
3-сетчатая
ПРЕДСТАВИТЕЛИ:
а)альдостерон
б)кортизон(гидрокортизол)
в)кортизол
г)дезоксикортикостерон
д)кортикостерон
е)тестостерон
18) Выберите правильные ответы
Для нервных механизмов регуляции функций организма характерно:
19) Заполните таблицу «Семенники»
Локализация Инкреторный аппарат Экскреторный аппарат
структуры функции структуры функции
20) Дайте определение понятия «гемолиз». Перечислите и кратко охарактеризуйте основные виды гемолиза
Предмет исследования – биотехнологические процессы.
Объект исследования – пищевая промышленность.
Основной целью работы является исследование биотехнологических процессов в пищевой промышленности.
Задачи работы. На основе литературных данных ознакомится со следующими вопросами:
1. Изучить историю развиия биотехнологий;
2. рассмотреть основные направления биотехнологий в пищевой промышленности;
3. изучить оснонвные принципы осуществления биотехнологических процессов.
Узнайте стоимость работы онлайн!
Предлагаем узнать стоимость вашей работы прямо сейчас.
Это не займёт
много времени.
Узнать стоимость
girl

Наши гарантии:

Финансовая защищенность
Опытные специалисты
Тщательная проверка качества
Тайна сотрудничества