Черчение и начертательная геометрия - готовые работы

ГлавнаяКаталог работЧерчение и начертательная геометрия
fig
fig
При проведении сопоставления геометрических параметров различных спиральных решеток с целью выявления тех или иных экстремальных (максимальных или минимальных) значений. В частности, интерес представляли спиральные решетки с соотношением количества встречных спиралей близким к пропорции «золотого сечения». Однако из всех рассмотренных вариантов, вариант ближайший к «золотому сечению» (N=3, M=5) не оказался экстремальным по определенным нами параметрам. Следовательно, в природных объектах укладку семян нельзя признать максимально плотной. Нельзя также утверждать, что площадь ячейки (четырехугольной или шестиугольной) является предельно максимальной по отношению к величине периметра (стенок) ячейки [30].
Данный способ построения дает возможность для практического выхода на решение целого ряда прикладных архитектурно-дизайнерских задач. В частности, разработанный метод расчета формы ячеек, позволит упорядочить процесс геометрического структурирования и формообразования в различных сферах дизайна (орнамент, декор и т.д.). Кроме того, его можно использовать в градостроительстве. Приведенные сопоставления различных геометрических структур дают возможность утверждать, что радиально-гексагональные структуры является наиболее оптимальными, по критерию минимизации длины периметров (путей, дорог, коммуникаций). При этом в них получается максимальная относительная площадь ячеек (кварталов, районов).
Возникает еще один вопрос: почему же тогда природа не “выбрала” радиально-гексагональную структуру для формирования живых объектов? По всей видимости, здесь мы имеем дело с разными стратегиями роста структур. Так, если рассматривать процессы роста города, то можно утверждать, что они основаны на одновременном росте по нескольким направлениям от центра к периферии. И в этом случае происходит присоединение новых территорий. Нечто похожее происходит, очевидно, и в случае роста кристаллов. А в биологических объектах, например в корзинке подсолнуха, процесс роста осуществляется по другому сценарию. В центре корзинки через равные промежутки времени происходит формирование новых семечек, которые в процессе выталкивания новыми семечками, занимают тот сектор корзинки, который является более свободным от других семечек.
Математическое моделирование этого процесса [41], показало, что наиболее оптимальное заполнение корзинки возникающими и растущими семечками происходит в случае формирования спиральных решеток с соотношением количества правых и левых спиралей в пропорции “золотого сечения”.
Принципиальная разница между процессами роста кристаллов и роста биологических структур, очевидно, заключается в том, что в первом случае действует механизм “наращивания”, т.е. присоединения новых элементов извне, а во втором случае действует механизм “выталкивания” каждого нового элемента из центра к периферии.
В биологическом и растительном мире вступает в действие принцип экономии материи (рис.40), который не действует в неорганическом мире.
Ярким примером этому служит стремление живых организмов к экономии костной субстанции при распределении материи, дающее максимум прочности во всех нужных направлениях.
Кроме этого, живые организмы проявляют лишь одним им свойственный феномен - феномен роста. Неорганические кристаллы увеличиваются путем присоединения идентичных элементов; живой организм растет путем "всасывания", идущего изнутри и направляющегося наружу.
Отвечая на вопрос: "Где граница между живой и мертвой природой?" многие известные специалисты в области симметрии и кристаллографии обращают внимание на то, что это различие состоит в использовании в живых организмах так называемой "пятерной" или "пентагональной" симметрией, связанной с золотым сечением.


2.3 Сущность геометрических построений
Развитие статических и динамических представлений детей относятся к числу важнейших задач обучения в школе. Сознавая это, учитель старается использовать богатые возможности курса черчения для постановки и решения различных пространственных задач в процессе графической подготовки учащихся. Немаловажную роль в расширении и продуктивном развитии пространственных представлений играют геометрические построения [9;14].
Деление окружности на равные части, достаточно распространенное геометрическое построение, основывается на законах симметрии, а именно является примером поворотной симметрии [1;8].
Деление окружности на восемь равных частей.
Деление окружности на восемь равных частей производится в следующей последовательности (рис.41):
Проводят две перпендикулярные оси, которые пересекая окружность в точках 1,2,3,4 делят ее на четыре равные части;
Применяя известный прием деления прямого угла на две равные части при помощи циркуля или угольника строят биссектрисы прямых углов, которые, пересекаясь с окружностью в точках 5, 6, 7, и 8 делят каждую четвертую часть окружности пополам.

Деление окружности на три, шесть и двенадцать равных частей.
Деление окружности на три, шесть и двенадцать равных частей выполняется в следующей последовательности (рис.42):
Выбираем в качестве точки 1, точку пересечения осевой линии с окружностью.
Из точки 4 пересечения осевой линии с окружностью проводим дугу радиусом равным радиусу окружности R до пересечения с окружностью в точках 2 и 3; Точки 1, 2 и 3 делят окружность на три равные части;
Из точки 1 пересечения осевой линии с окружностью проводим дугу радиусом равным радиусу окружности R до пересечения с окружностью в точках 5 и 6; Точки 1 - 6 делят окружность на шесть равных частей;
Дуги радиусом R, проведенные из точек 7 и 8 пересекут окружность в точках 9, 10, 11 и 12;
Точки 1 - 12 делят окружность на двенадцать равных частей.
Деление окружности на пять равных частей.
Деление окружности на пять равных частей выполняется в следующей последовательности (рис.43):
Из точки А радиусом, равным радиусу окружности R, проводим дугу, которая пересечет окружность в точке В; Из точки В опускают перпендикуляр на горизонтальную осевую линию;
Из основания перпендикуляра - точки С, радиусом равным С1, проводят дугу окружности, которая пересечет горизонтальную осевую линию в точке D;
Из точки 1 радиусом равным D1, проводят дугу до пересечения с окружностью в точке 2, дуга 12 равна 1/5 длины окружности;
Точки 3, 4 и 5 находят откладывая циркулем по данной окружности хорды, равные D1.

Деление окружности на семь равных частей.
Деление окружности на семь равных частей выполняется в следующей последовательности (рис. 44):
Из точки А радиусом, равным радиусу окружности R, проводим дугу, которая пересечет окружность в точке В; Из точки В опускают перпендикуляр на горизонтальную осевую линию;
Длину перпендикуляра ВС откладывают от точки 1 по окружности семь раз и получают искомые точки 1 - 7.
Деление окружности на любое количество равных частей [27]
Для деления окружности на любое количество равных частей можно воспользоваться коэффициентами (см. таблицу 1.). Зная, на какое число n следует разделить окружность, находят коэффициент k. При умножении коэффициента k на диаметр D этой окружности, получают длину хорды, которую циркулем откладывают на заданной окружности n раз.
Таблица 1
n 25 26 27 28 29 30
k 0.12533 0,12054 0,11609 0,11196 0,10812 0,10453
n 31 32 33 34 35 36
k 0,10117 0,09802 0,09506 0,09227 0,08964 0,08716

Циклоида - траектория (путь) точка А, лежащая на окружности, которая катится без скольжения по прямой АА12 (рис. 45).
Построение циклоиды производится в следующей последовательности [14]:
На направляющей горизонтальной прямой откладывают отрезок АА12, равный длине производящей окружности радиуса r, (2pr); Строят производящую окружность радиуса r, так чтобы направляющая прямая была касательной к неё в точке А; Окружность и отрезок АА12 делят на несколько равных частей, например на 12; Из точек делений 11, 21, ...121 восстанавливают перпендикуляры до пересечения с продолжением горизонтальной оси окружности в точках 01, 02, ...012; Из точек деления окружности 1, 2, ...12 проводят горизонтальные прямые, на которых делают засечки дугами окружности радиуса r; Полученные точки А1, А2, ...А12 принадлежат циклоиде.
Проверка устойчивости центрально сжатых стержней ферм производиться по формуле:
не более 10%,
где φ - коэффициент продольного изгиба, определяемый в зависимости от гибкости
стержня λ и Ry: γс = 0,95 – для сжатых поясов и опорных раскосов,
γс = 0,8 – для остальных сжатых раскосов и стоек.
Для подбора сечения предварительно задаем φ, например, φ = 0,7 , тогда:
и по сортаменту выбираем сечение стержня из 2–х равнополочных уголков с A ≈ Aтр. Для него находим гибкости: в плоскости фермы
λx = lxix ,
и из плоскости фермы λy = lyiy , и по максимальной из них определяем по таблице
коэффициент φ. Делаем проверку подобранного сечения:
.
Если необходимо, производим корректировку сечения.
Таблица расчета сварных швов

Стержня
сечение Расчетное
усилие
N, кг Шов по обушку Шов по перу
Nоб, кг Кобf, см lобw, см Nп, кг Кпf, см lп w, см
1 – 4
1 – 2
2 – 4
4 – 5
5 – 7
3 – 4 ┘└ 140х10
┐┌ 125х10
┐┌ 70х8
┐┌ 90х9
┐┌ 70х8
┐┌ 50х5 113000
64800
46300
27800
9300
10800 79100
45360
32410
19460
6510
7560 1,0
1,0
0,9
1,0
0,9
0,6 28,0
16,0
14,0
8,0
5,0
5,0 33900
20340
13890
8340
2790
3240 0,9
0,9
0,8
0,9
0,8
0,4 14,0
9,0
7,0
5,0
5,0
5,0
Расчетная длина сварных швов:
-по обушку:
-по перу:
где β – коэффициент глубины проплавления; для полуавтоматической сварки β = 0,8.
Rwf – расчетное сопротивление срезу металла шва;
для сварочной проволоки марки СВ – 08 Rwf = 1800 кг/см2.
Минимальная длина сварных швов: lw,min = 5 см.
8 Конструирование узлов ферм

Рис. 8
Узнайте стоимость работы онлайн!
Предлагаем узнать стоимость вашей работы прямо сейчас.
Это не займёт
много времени.
Узнать стоимость
girl

Наши гарантии:

Финансовая защищенность
Опытные специалисты
Тщательная проверка качества
Тайна сотрудничества