Естествознание - готовые работы

ГлавнаяКаталог работЕстествознание
fig
fig
ВВЕДЕНИЕ
Биомеханика человека - интегральная, междисциплинарная наука, развитие которой в XXI веке (по прогнозу последних 20 лет) ожидается высокими темпами. Это вполне закономерно, т.к. все науки о человеке, о его потенциальных возможностях являются центром интереса мировой науки. Биомеханика опирается на функциональные знания в области биологических наук о человеке (анатомия, биофизика, физиология, генетика, медицина), физико-математических дисциплин, достижений технического прогресса. Биомеханика нашла свое применение, как прикладная наука, при подготовке специалистов в области спорта, промышленности, искусства, медицины, эргономики и, конечно, в военном деле.
Высококвалифицированные научные кадры по биомеханике человека необходимы во многих областях человеческой жизни. Биомеханика - основополагающая наука в сфере спорта, решающая задачи оптимизации состояния и двигательной деятельности. Биомеханические знания важны педагогам общеобразовательных школ, детских садов, клубов, физкультурных организаций, реабилитационных центров; медикам, занимающимся ортопедией, протезированием в широком смысле от сосудов, зубов до костей и пр.; эргономистам во всех видах промышленности, транспорта; производителям обуви, мебели, спортивного инвентаря, предметов бытового назначения.
Исследования в области биомеханики представляют существенный интерес для разных областей знаний: физиологии труда и спорта, военной и клинической медицины, в том числе неврологии, ортопедии, травматологии, протезирования. Так, изучение биомеханики физических упражнений и спортивных движений способствует раскрытию основ мастерства и разработке аучно обоснованной системы тренировки. Изучение рабочих движений человека даёт возможность оценить экономичность того или иного варианта движений и совершенствовать их структуру. Изучение прочности костей, суставов, связок, упруговязких свойств мышц и других тканей важно для травматологии и ортопедии, для понимания механизмов действия повреждающих факторов и предупреждения травм.
ГЛАВА I. ПРЕДСТАВЛЕНИЕ О ФИЗИОЛОГИИ И БИОХИМИИ
I. I Физиология как наука
Физиология (от греч. physis — природа и logos — учение) — наука о природе, о существе жизненных процессов. Физиология изучает жизнедеятельность организма и отдельных его частей: клеток, тканей, органов, систем. Предметом изучения физиологии являются функции живого организма, их связь между собой, регуляция и приспособление к внешней среде, происхождение и становление в процессе эволюции и индивидуального развития особи.
Физиологическая функция (functio — деятельность) — проявления жизнедеятельности организма и его частей, имеющие приспособительное значение и направленные на достижение полезного результата. В основе функции лежит обмен веществ, энергии и информации.
Общая физиология представляет собой теоретическую основу физиологии спорта. Она описывает основные закономерности деятельности организма людей разного возраста и пола, различные функциональные состояния, механизмы работы отдельных органов и систем организма и их взаимодействия. Ее практическое значение состоит в научном обосновании возрастных этапов развития организма человека, индивидуальных особенностях отдельных людей, механизмов проявления их физических и умственных способностей, особенностей контроля и возможностей управления функциональным состоянием организма. Физиология вскрывает последствия вредных привычек у человека, обосновывает пути профилактики функциональных нарушений и сохранение здоровья. Знания физиологии помогают педагогу и тренеру в процессах спортивного отбора и спортивной ориентации, в прогнозировании успешности соревновательной деятельности спортсмена, в рациональном построении тренировочного процесса, в обеспечении индивидуализации физических нагрузок и открывают возможности использования функциональных резервов организма.
Физиология как наука неразрывно связана с другими дисциплинами. Она базируется на знаниях физики, биофизики и биомеханики, химии и биохимии, общей биологии, генетики, гистологии, кибернетики, анатомии. В свою очередь, физиология является основой медицины, психологии, педагогики, социологии, теории и методики физического воспитания. В процессе развития физиологической науки из общей физиологии выделились различные ее частные разделы - такие, как физиология труда, физиология спорта, авиакосмическая физиология, физиология подводного труда, возрастная физиология, психофизиология и др.
Очевидно, что если предметом познания биохимии является протекание химических процессов в живом организме, биофизики — физических процессов, то физиология изучает новое качество живого — его функцию. При этом для удобства преподавания функция отдельных органов и систем рассматривается иногда самостоятельно. Стержневым моментом синтетического подхода служит представление о том, что функция каждого органа находится в тесной связи с функциями других органов и систем, а весь комплекс регуляторных механизмов обеспечивает не только тонкое взаимодействие внутри организма, но и приспособление организма как целого к постоянно меняющимся физико-химическим и социальным условиям среды.
Физиология — наука экспериментальная. Знания о функциях и механизмах деятельности организма построены на опытах, проводимых на животных, наблюдениях в клинике, обследованиях здоровых людей в различных экспериментальных условиях. При этом в отношении здорового человека требуются методы, не связанные с повреждениями его тканей и проникновением во внутрь организма — так называемые неинвазивные методы.
Решение №2
Для решения поставленной задачи используем законы Менделя.
Голубоглазость в двух кареглазых родителей будет рецессивным признаком, который будет передаваться по наследству. При скрещивании гибридных форм организма, получается соотношение 1:2:1, то есть один потомок будет гомозиготным и будет обладать карими глазами, два других будут гетерозиготными, но все же будут обладать карими глазами, так как кареглазость – доминантный признак, и лишь четвертый будет наследником рецессивных признаков и будет голубоглазым. Из этого следует, что 25% потомства будет обладать синей окраской радужной оболочки глаза.
37.Атомистическая концепция строения материи.
Современное учение об атоме. Основоположниками атомистического учения были древнегреческие философы Левкипп и его ученик Демокрит. Именно они выдвинули идею о дискретном строении материи и ввели термин «атом». Демокрит определял атом как наименьшую, далее неделимую, частицу материи. Атом – неделим, вечен, неизменен. Атомы никогда не возникают и никогда не погибают. Атомы бывают самой разнообразной формы – шарообразные, угловатые, крючкообразные, вогнутые, выпуклые и т.п. Атомы различны по размерам. Атомы невидимы, их можно только мыслить. В процессе движения в пустоте атомы сталкиваются друг с другом и сцепливаются. Сцепление большого количества атомов составляет вещи. Возникновение и уничтожение вещей объясняется сложением и разделением атомов; изменение вещей - изменением порядка и положения (поворота) атомов. По Демокриту, мир в целом – это беспредельная пустота, начиненная многими отдельными мирами. Отдельные миры образовались в результате того, что множество атомов, сталкиваясь друг с другом, образуют вихри - кругообразные движения атомов. В вихрях крупные и тяжелые атомы скапливаются в центре, а более легкие и малые вытесняются к периферии. Так возникает земля и небо. Небо образует огонь, воздух, светила. Земля – центр нашего мира, на краю которого находятся звезды. Каждый мир замкнут Число миров бесконечно. Многие из них могут быть населенными. Демокрит впервые описал Млечный путь как огромное
4. Какие типы взаимодействия существуют в природе? К каким из них относятся: вращение Земли вокруг Солнца, взаимодействие атомов в молекулах, снежная лавина в горах, электрический звонок, движение груза по наклонной плоскости, устойчивость атомного ядра.
Типы взаимодействия в природе: гравитационное, электромагнитное, сильное (ядерное) и слабое.
Вращение Земли вокруг Солнца – гравитационное взаимодействие.
Взаимодействие атомов в молекулах – электромагнитное взаимодействие.
Снежная лавина в горах – гравитационное взаимодействие.
Электрический звонок– электромагнитное взаимодействие.
Движение груза по наклонной плоскости – гравитационное взаимодействие.
Устойчивость атомного ядрам – сильное (ядерное) взаимодействие.
5. Сформулируйте закон сохранения импульса. Приведите примеры технических устройств, в которых используется этот закон.
Закон сохранения импульса: импульс замкнутой системы материальных точек остаётся постоянным.
Примеры технических устройств, в которых используется закон сохранения импульса:
1) действие ракет (и реактивных двигателей) основано на том, что в результате выбрасывания из сопла ракеты струи образующихся при сгорании топлива газов ракете сообщается такой же по величине импульс, какой уносят с собой газы.
2) Движение кораблей, катеров.
6. Каким образом задается состояние классической частицы? Каким образом задается состояние микрочастицы в квантовой механике?
Состояние классической частицы в любой момент времени описывается заданием ее координат и импульсов (x,y,z,px,py,pz). Зная эти величины в момент времени t, можно определить эволюцию системы под действием известных сил во все последующие моменты времени. Координаты и импульсы частиц сами являются непосредственно на опыте измеряемыми величинами.
В квантовой физике состояние микрочастицы описывается волновой функцией (x,y,z). Т.к. для квантовой частицы нельзя одновременно точно определить значения ее координат и импульса и не имеет смысла говорить о движении частицы по определенной траектории, можно определить только вероятность нахождения частицы в данной точке в данный момент времени, которая связана с волновой функцией - * .
. Какие растворы называют перенасыщенными?
Пересыщенный раствор — раствор, содержащий при данных условиях больше растворенного вещества, чем в насыщенном растворе, избыток вещества легко выпадает в осадок. Обычно пересыщенный раствор получают охлаждением раствора, насыщенного при более высокой температуре.
5. Что такое биополе?
Биопо́ле — комплекс излучений и полей, генерируемых живыми организмами либо их органами, т.е. это совокупность физических полей, излучаемых живым организмом: тепло, запахи, электромагнитное излучение
Введение
Актуальность. Для целостной картины окружающего мира огромное значение имеет возникновение качественно нового уровня его организации - жизни и сознания. Вопрос о происхождении жизни один из самых трудных в современном естествознании. Он тесно связан с проблемой отличия живого от неживого и с проблемой эволюции жизни. Необходимо найти ответы на вопросы: в чем сущность жизни? Как действовали механизмы эволюции при зарождении жизни?
Несмотря на то, что человек интуитивно понимает и различает живое и неживое, дать определение сущности живого представляется затруднительным. Долгое время в науке использовалось понятие жизни, предложенное Ф. Энгельсом: жизнь есть форма существования белковых тел, одним из основных свойств которой являются процессы ассимиляции и диссимиляции, благодаря чему поддерживается состав и структура живых организмов. В этом, достаточно точном и конкретном определении, ничего, однако, не сказано о тех механизмах, которые реализуют не только обмен веществ, но и воспроизводство живых организмов. Эта последняя проблема имела принципиальное значение. Именно ее решение качественно изменило представление о сущности жизни.
В процессе размножения живых организмов при переходе от одного поколения к другому осуществляется так называемая конвариантная редупликация. Смысл ее в том, чтобы в последующем поколении воспроизвести свойства организма предыдущего поколения. Понять этот механизм удалось лишь во второй половине XX века, когда к познанию жизни подключились физика и химия, что позволило выделить и приступить к исследованию молекулярного уровня биологической организации. При этом оказалось, что белки, которым придавали решающее значение при рассмотрении сущности живого, в действительности вторичны по отношению к той субстанции, которая образует основу жизни. Такой субстанцией, ответственной за воспроизведение жизни, оказались химические соединения гораздо более простые, чем белки — нуклеиновые кислоты ДНК и РНК. Открытие роли этих кислот в существовании и функционировании живого заставило переформулировать то определение жизни, которое ранее казалось вполне приемлемым.
В настоящее время существует много содержательных определений живого. Однако, несмотря на их обилие, дать однозначное определение весьма затруднительно. Обобщая достижения современного естествознания, М. В. Волькенштейн определил живые тела «как открытые саморегулирующиеся и самовоспроизводящиеся системы, состоящие из биополимеров: белков и нуклеиновых кислот».
В вещественном плане в состав живого обязательно входят высокоупорядоченные макромолекулярные органические соединения — биополимеры: белки и нуклеиновые кислоты (ДНК и РНК); в структурном плане живое отличается от неживого клеточным строением; в функциональном плане для живых тел характерно воспроизводство самих себя.
Таким образом, жизнь как особая форма существования материи характеризуется двумя отличительными свойствами – самовоспроизведением и обменом веществ с окружающей средой. На свойствах саморепродукции и обмена веществ строятся все современные гипотезы возникновения жизни.
Целью данной работы является изучение естественнонаучных моделей происхождения жизни.
Задачи работы. Для достижения поставленной цели решим следующие вопросы:
1. Рассмотрим развитие представлений о происхождении жизни.
2. Изучим основные гипотезы происхождения жизни.
3. Изучим структурные уровни организации живого.
4. Эволюционные идеи.
1. Развитие представлений о происхождении жизни
Понимание развития жизни на Земле предпринималось еще в древности. В античности для решения этой проблемы существовали два противоположных подхода. Религиозно-идеалистический подход – возникновение жизни не могло осуществиться естественным, объективным, закономерным путем. На их основе понимание жизни исходило из божественного творческого акта (креационизм), поэтому всем существам свойственна особая, независимая от материального мира «жизненная сила», которая направляет все процессы жизни (витализм). В основе материалистического подхода лежало представление о том, что под влиянием естественных факторов живое может возникнуть из неживого, органическое из неорганического. При всей своей примитивности первые исторические формы концепции самозарождения сыграли прогрессивную роль в борьбе с креационизмом [1, с.486].
В эпоху Средневековья и эпоху Возрождения получила широкое распространение идея самозарождения. Тогда допускалась возможность самозарождения не только простых, но и высокоорганизованных существ.
Невозможность произвольного зарождения жизни была доказана многими опытами – к примеру, итальянским ученым Ф. Реди.
В итоге идея самозарождения была развенчана Л.Пастером в середине XIX в. Он показал, что не только в запаянном сосуде, но и в незакрытой колбе с длинной S-образной горловиной хорошо прокипяченный бульон остается стерильным, потому что в колбу через такую горловину не могут проникнуть микробы. Это доказывало, что в наше время какой бы то ни было новый организм может появиться только от другого живого существа (биогенез).
Были попытки объяснить происхождения жизни путем занесения ее из других космических миров. Немецкий врач Г.Рихтер в 1865г. выдвинул гипотезу космозоев – космических зачатков. Согласно ей жизнь является вечной и зачатки населяющие мировое пространство, могут переноситься с одной планеты на другую. Единомышленниками этой теории были ученые XIX в. – У. Томсоном, Г. Гельмгольцем и др. Сходную гипотезу, названную панспермией, в 1907 г. выдвинул известный шведский естествоиспытатель С. Аррениус: во Вселенной вечно существуют зародыши жизни, которые движутся в космическом пространстве под давлением световых лучей; попадая в сферу притяжения планеты, они оседают на ее поверхности и закладывают на этой планете начало живого.
В XX в. учение продвинулось вперед. Такие отрасли знаний, как биохимия, биофизика, генетика, молекулярная биология, космическая биохимия и др., расширили представления о сущности земной жизни, о возможности существования подобных явлений вне пределов нашей планеты. В наше время известно, что в любом существе, живущем на Земле, присутствует 20 аминокислот, пять оснований, два углевода и один фосфат. Небольшое число одних и тех же молекул во всех живых организмах убеждает, что все живое должно иметь единое происхождение.
Отрицание возможности самозарождения жизни в настоящее время не противоречит представлениям о принципиальной возможности развития органической природы, жизни в прошлом из неорганической материи. На определенной стадии развития материи жизнь может возникнуть как результат естественных процессов, совершающихся в неорганической природе. Кроме того, элементарные химические процессы на начальных этапах возникновения и развития жизни могли происходить не только на Земле, но и в других частях Вселенной и в различное время. Поэтому не исключается возможность занесения определенных предпосылочных факторов жизни на Землю из Космоса. Однако в изученной пока человеком части Вселенной только на Земле они привели к формированию и расцвету жизни.
Согласно положениям современной науки, жизнь возникла из неживого вещества в результате эволюции материи, является результатом естественных процессов, происходивших во Вселенной. Жизнь — это свойство материи, которое ранее не существовало и появилось в особый момент истории Земли. Возникновение жизни явилось результатом процессов, протекавших сначала миллиарды лет во Вселенной, а затем многие миллионы лет на Земле. От неорганических соединений к органическим, от органических к биологическим — таковы последовательные стадии процесса зарождения жизни.
Возраст Земли исчисляется примерно 4,6 млрд лет. Жизнь существует на Земле, видимо, около 3,8 млрд лет. Признаки деятельности живых организмов обнаружены в докембрийских породах, рассеянных по всему земному шару.
В сложном процессе возникновения жизни на Земле можно выделить несколько основных этапов. Первый из них связан с образованием простейших органических соединений из неорганических [1, с.487].
2. Основные гипотезы происхождения жизни
В попытках провести разграничение между неживой и живой природой наука сталкивается с проблемой возникновения жизни. В современной литературе упоминаются следующие гипотезы возникновения жизни [2,3]:
- креационизм (созидание, творение) — содержит тезис о божественном творении мира и человека. Креационизм — религиозная доктрина и потому выносится за рамки научного исследования. Трудности, с которыми сталкивается наука при решении проблемы возникновения жизни, и сегодня создают почву для активизации креационистских взглядов;
- концепция многократного самопроизвольного зарождения жизни из неживого вещества. Ее придерживался еще Аристотель, допускавший возможность возникновения мелких организмов из неорганических веществ. Французский биолог Луи Пастер (1822-1895) в результате экспериментов опроверг эту гипотезу и подтвердил справедливость популярной в то время теории биогенеза:
- теория биогенеза сводится к утверждению, что жизнь может возникнуть только из предшествующей жизни, т.е. «живое от живого». Она была сформулирована в XV в. итальянским врачом и биологом Ф. Реди и известна в литературе как «принцип Реди»;
- концепция стационарного состояния, согласно которой жизнь существовала всегда. Немногочисленные ее сторонники считают, что виды никогда не возникали, они существовали всегда и у каждого вида есть только две возможности: увеличение численности или вымирание;
- концепция панспермии — внеземного происхождения жизни, по которой жизнь была занесена на Землю извне, из далеких районов космоса, где она могла существовать. Концепция опирается на обнаружение при изучении метеоритов и комет «предшественников живого» — органических соединений, которые возможно сыграли роль «семян». Эти семена нашли на Земле благоприятные условия для превращения в живые организмы с их дальнейшей эволюцией. Однако эта гипотеза считается маловероятной и для науки неплодотворной, поскольку проблема происхождения живого от неживого все равно остается открытой для •естествознания;
Вступление
Индивидуальное развитие организмов является предметом исследования многих биологических наук: эмбриологии (биологии индивидуального развития), физио¬логии, биохимии, гистологии, цитологии, цитогенетики и генетики. Каждая из этих наук, используя свои методы, изучает различные стороны и закономерности индивидуального развития. Раздел генетики, изучающий действие генов в онтогенезе, называется генетикой индивидуального развития, феногенетикой или онтогенетикой.
Генетические методы исследования открыли новые возможности для изучения индивидуального развития. При этом особое значение имеют исследования действия мутантных генов. Получая прямые и обратные мутации генов, можно включать и выключать отдельные звенья развития, что позволяет установить последовательность процессов.
Индивидуальное развитие особи называется онтогенезом.
Особью, или индивидом (от лат. individuum – неделимый) называется неделимый далее организм (от лат. organizo и франц. organisme – устраиваю, придаю стройность). Главные существенные признаки особи – это её целостность, строгая взаимозависимость всех частей, органов и систем органов: разделить особь на части без потери морфофункциональной индивидуальности невозможно. Само выражение «особь» подразумевает обособленность: таким образом, особь обособлена, отделена от других подобных особей, она способна (хотя бы частично) к самостоятельному существованию.
С эволюционной точки зрения, особью называется морфофизиологическая единица, происходящая от одного зачатка: от одной зиготы (при половом размножении), яйцеклетки (при партеногенезе), споры (при споровом размножении), почки или любого другого зачатка (при бесполом или вегетативном размножении).
1. Общая характеристика онтогенеза
1.1. Целостность и дискретность онтогенеза
Онтогенез особи начинается с момента её образования. Этим событием особи может быть прорастание споры, образование зиготы, начало дробления зиготы, возникновение особи тем или иным путем при вегетативном размножении (иногда начало онтогенеза относят к образованию исходных клеток, например, оогоний). В ходе онтогенеза происходят рост, дифференцировка и интеграция частей развивающегося организма. Онтогенез особи может завершиться её физической смертью или её воспроизведением (в частности, при размножении путем деления).
Каждый организм в период индивидуального развития представляет собой целостную систему, следовательно, и онтогенез – это целостный процесс, который не может быть разложен на простые составляющие части без потери качества. Однако существует морфологическая и функциональная дискретность онтогенеза, обусловленная дискретной генетической детерминацией. Реализация генотипа в онтогенезе изменчива и происходит приспособительно к конкретным условиям среды. Генотип способен обеспечивать в определенных пределах изменчивость онтогенеза в зависимости от изменяющихся условий внешней среды. Степень возможной изменчивости в ходе реализации генотипа называется нормой реакции и выражается совокупностью возможных фенотипов при различных условиях среды. Это определяет так называемую онтогенетическую адаптацию, обеспечивающую выживание и репродукцию организмов иногда даже при значительных изменениях внешней среды.
1.2. Необратимость онтогенеза.
Онтогенез многоклеточных организмов сопровождается рядом общих основных процессов:
 рост – увеличение числа клеток и/или их объема (растяжение);
 гистогенез – образование и дифференцировка тканей;
 органогенез – образование органов и систем органов;
 морфогенез – формирование внутренних и внешних морфологических признаков;
 физиолого-биохимические преобразования.
Все это происходит на основе биохимической, физиологической, генетической и морфологической дифференцировки клеток, тканей и органов. В ходе онтогенеза возникает ряд особенностей, обеспечивающих приспособление организма к окружающей среде.
Онтогенез включает две группы процессов: морфогенез и воспроизведение (репродукцию). При соблюдении принципов дискретности и необратимости онтогенеза особь вначале должна использовать энергию для осуществления морфогенетических процессов, и лишь по достижении зрелости – для воспроизведения.
2. Реализация генотипа в онтогенезе
2.1.Взаимосвязь между генотипом и фенотипом в онтогенезе.
Генотип – это программа развития, обусловленная историей развития вида. Фенотип можно определить как результат реализации генотипа в ходе онтогенеза при определенных условиях внешней среды, для которого характерна система признаков и свойств организма. Например, у растений синтез хлорофилла, который контролируется действием генов, не может происходить в темноте, и для этого процесса обязательно наличие света. Подобное наблюдается и при образовании антоциана: при недостаточном освещении гены, контролирующие образование этого пигмента, действуют очень слабо или совсем не действуют. Известно, что для нормального развития, цветения и плодоношения каждый вид растений на определенных этапах онтогенеза нуждается в определенной продолжительности светового дня.
2.2. Экспрессивность и пенетрантность генов
В идеале каждому генотипу должен соответствовать строго определенный генотип. Однако такое однозначное соответствие встречается сравнительно редко. Для количественного описания неоднозначного соответствия фенотипа генотипу существуют понятия экспрессивности и пенетрантности генов.
Экспрессивностью называется степень выраженности рассматриваемого признака у организмов с одинаковым генотипом. Экспрессивностью характеризуется конкретная особь. Например, у дрозофил с генотипом eyey (eyeless – безглазые) уменьшено число глазных фасеток, но абсолютное число фасеток варьирует от 0 до 50% от нормы (779 фасеток). Тогда экспрессивность аллеля ey при полном отсутствии фасеток у особи равна 100%, а у особи с числом фасеток, уменьшенным в два раза, – 50%.
Пенетрантностью проявления гена называется отношение числа особей, у которых проявляется данный признак, к общему числу с данным генотипом. Пенетрантностью характеризуется признак в однородной группе особей. При полной пенетрантности (100%) мутантный ген проявляет свое действие у всех особей, имеющих его, а при неполной – лишь у некоторых. Например, у дрозофилы доминантная мутация Lobe (L) вызывает уменьшение размера глаз, однако этот признак проявляется только у 75% осо¬бей; у остальных 25% мух – носителей гена L – глаза нормальные. Тогда пенетрантность аллеля L равна 75%.
Экспрессивность и пенетрантность часто зависят от условия среды, в которой развивается организм: освещения, температуры или влажности. Пример 1. У примулы известен ген окраски цветка, действие которого зависит от температуры. При температуре 30…35° и высокой влажности цветки примулы оказываются белыми, а при низкой температуре – красными.
Пример 2. У кроликов фенотипическое проявление гена Ch при нормальной температуре (~ 20°) выражается в том, что при общей белой окраске уши, нос, кончики лап и хвост оказываются черными (такая окраска называется горностаевой, или гималайской). При температуре выше 30° окраска кроликов оказывается сплошь белой. Если же любой участок тела, на котором выщипана белая шерсть, систематически охлаждать, то на нем вырастает черная шерсть.
В рассмотренных примерах экспрессивность аллелей белой окраски цветков у примулы и горностаевой окраски у кроликов зависит от температуры. В других случаях пенетрантность и экспрессивность определяются генами-модификаторами, которые создают генотипическую среду для проявления гена. Значение генетических факторов в определении характера проявления признаков доказывается эффектом отбора в линиях с не полностью пенетрантными генами. Можно получить линии как с резко сниженной пенетрантностью по сравнению с исходной линией, так и со 100%-ной пенетрантностью.
Таким образом, в фенотипе никогда не реализуются все генотипические возможности, т. е. фенотип каждой особи есть лишь частный случай проявления ее генотипа в определенных условиях развития. Формирование различных вариантов признака на основе одного и того же генотипа называется поливариантностью онтогенеза.
Аннотация
В данном реферате рассмотрены основные положения теории эволюции. Для наиболее полного раскрытия данной темы, на мой взгляд, необходимо отражение таких аспектов, как утверждение теории эволюции Дарвина, современная теория биологической эволюции и ее критики и синтетическая теория эволюции: первый синтез дарвинизма и генетики, в котором, в свою очередь рассмотрены вопросы создания синтетической теории эволюции и принципы и понятия синтетической теории эволюции.
Введение
Под эволюцией обычно понимают процесс изменений, одну из форм движения, для которой, в отличие от революции, характерны постепенные, непрерывные, накапливающиеся перемены, тем не менее приводящие к качественным сдвигам в развитии, в том числе и живой природы.
Представление о том, что окружающий нас бесконечно многообразный мир живых организмов появился в результате длительного процесса изменения и развития, эволюционным путем, сложилось не сразу. В этом процессе становления эволюционной парадигмы, как правило, выделяют три основных этапа.
Первый этап — традиционная биология; наиболее яркий ее представитель — шведский естествоиспытатель К. Линней.
Второй этап — классическая теория биологической эволюции; создатель — английский естествоиспытатель Ч. Дарвин, Третий этап — синтетическая теория биологической эволюции.
Ее содержание явилось результатом синтеза идей Ч. Дарвина и чешского ботаника, основателя генетики Г. Менделя .
Я считаю данную тему актуальной и крайне необходимой для подробного изучения, именно поэтому в данном реферате рассмотрены все основные положения теории эволюции.
1 Утверждение теории эволюции Ч. Дарвина
Нужно определенное время, чтобы новая теория окончательно утвердилась в науке. Процесс утверждения теории есть процесс превращения предпосылок теории в ее неотъемлемые компоненты, логически выводимые из оснований теории. При этом изменяется множество различных понятий, представлений, допущений, гипотез и других средств познавательной деятельности, ценностных и методологических компонентов познания.
Эволюционная теория Ч. Дарвина — сложнейший синтез самых различных биологических знаний, в том числе опыта практической селекции. Поэтому процесс утверждения теории затрагивал самые разнообразные отрасли биологической науки и носил сложный, подчас драматический характер-, протекал в напряженнейшей борьбе различных мнений, взглядов, школ, мировоззрений, тенденций и т.д.
Против теории естественного отбора ополчились не только сторонники креационистских воззрений и антиэволюционисты (А. Седжвик, Р. Оуэн, Л. Агассис, А. Катрфаж,Г. Меррей, С. Карпентер и др,), но и естествоиспытатели, выдвигавшие и обосновывавшие другие эволюционные концепции, построенные на иных, чем дарвиновская теория, принципах. Среди них: неоламаркизм (К.В. Негели и др.), мутационизм (СИ. Коржинский с его идеей гетерогенезиса, т.е. скачкообразного возникновения новых видов, и др.), неокатастрофизм {Э. Зюсс и др.), телеологические концепции разного рода (Р.А. Келликер с идеей автогенетического стремления к прогрессу; А. Виганд, признававший существование идеальной «образовательной силы» эволюционного процесса, которая, по его мнению, уже иссякла и потому эволюция прекратилась, и др.).
Более того, в самом дарвиновском учении выделились три относительно самостоятельных направления, каждое из которых по-своему понимало, дополняло и совершенствовало воззрения Ч. Дарвина. Первое из них — так называемый ортодоксальный дарвинизм, признававший отбор единственным движущим фактором эволюции (А.Р. Уоллес, А. Грей, Е. Паультон и др.). Второе направление возглавлялось Э. Геккелем, так называемый геккелевский дарвинизм, признававший в качестве факторов эволюции как естественный отбор, так и ламарковское упражнение - неупражнение органов. Третье направление получило название неодарвинизма, возглавлявшееся А. Вейсманом, который категорически отрицал наследование приобретенных признаков, а принцип отбора распространял на соревнование не только между особями, но и между клетками. Будучи необходимым логическим звеном в развитии дарвинизма, такая дифференциация объективно влекла за собой ослабление лагеря дарвинистов, снижение полемической остроты их выступлений, тем более что между этими направлениями со временем нарастало все большее взаимопонимание .
Все это привело к тому, что картина развития биологии во второй половине XIX в. была очень пестрой, мозаичной, заполненной противоречиями, драматическими событиями, страстной борьбой мнений, школ, направлений, взаимным непониманием позиций, а часто и нежеланием понять точку зрения другой стороны, обилием поспешных, непродуманных и необоснованных .выводов, опрометчивых прогнозов и замалчивания выдающихся достижений. В этом насыщенном самыми разнообразными красками полотне отразились борьба материализма и идеализма, метафизики и диалектики, предметоцентризма и системоцентризма, противоречия социально-культурного контекста развития естествознания.
Вокруг роли, содержания, интерпретации принципов дарвиновской теории велась острая и длительная борьба, особенно вокруг принципа естественного отбора. Важнейшими здесь было два вопроса. Первый состоял в том, может ли естественный отбор, выполняя функцию отсева нежизнеспособных особей, наряду со стабилизирующей выполнять и творческую роль, обеспечивать поступательность эволюции.
Второй вопрос, особенно беспокоивший Ч. Дарвина, прямо вытекал из незнания тогда дискретности наследственных факторов: каким образом благоприятные признаки выживших при отборе особей сохраняются в их потомстве и не растворяются при скрещивании носителей этих признаков с теми особями, которые несут в себе иные признаки?
Можно указать на четыре основных явления в системе биологического познания второй половины XIX - начала XX в., которые были вехами в процессе утверждения принципов теории естественного отбора.
О возникновение и бурное развитие так называемого филогенетического направления, вдохновителем которого был Э. Геккель; О формирование эволюционной биологии - проникновение эволюционных представлений во все отрасли биологической науки;
О создание экспериментально-эволюционной биологии; 0 синтез принципов генетики и дарвинизма и создание основ синтетической теории эволюции.
Объяснение эмпирических аномалий и вплетение их в систему дарвиновского учения наиболее ярко воплотилось в бурном развитии в 1860-1870-х гг. филогенетического направления, ориентированного на установление родственных связей между видами, на поиски переходных форм и предковых видов, на анализ генезиса крупных таксонов, изучение происхождения органов и др. Общая задача филогенетического направления, как сформулировал ее Геккель, состояла в создании филогенетического древа растений и животных на основе, прежде всего данных сравнительной анатомии, палеонтологии и сравнительной эмбриологии .
В рамках филогенетического направления были вскрыты и исследованы закономерности, имеющие общебиологическую значимость: биогенетический закон, согласно которому онтогенез есть краткое и сжатое повторение филогенеза (Э. Геккель, Ф. Мюллер, А.О. Ковалевский, И.И. Мечников), закон необратимости эволюции (Л. Долло), закон более ранней закладки в онтогенезе прогрессивных органов (Э. Менерт), закон анадаптивных и инадаптивных путей эволюции (Б.О. Ковалевский), принцип неспециализированности предковых форм (Э. Коп), принцип субституции органов (Н. Клейненберг), закон эволюции органов путем смены функций (А. Дорн) и др.
Не все из этих закономерностей рассматривались биологами как формы обоснования и подтверждения дарвиновской теории. Более того, на базе некоторых из них выдвигались новые концепции эволюции, которые, по замыслу их авторов, должны были опровергнуть дарвиновскую теорию и заменить ее новой эволюционной теорией. Это характерно для периода утверждения любой фундаментальной теории: пока теория окончательно не сложилась, не подчинила себе свои предпосылки, не продемонстрировала свои предсказательные возможности, способность объяснять факты предметной области, часты попытки заменить ее другими теориями, построенными на иных принципах.
Вывод 1. Многим особям не удаётся выжить и оставить потомство. В популяции происходит «борьба за существование». Непрерывная конкуренция между индивидуумами за факторы среды в пределах одного вида или между представителями разных видов приводит к тому, что некоторые организмы не смогут выжить или оставить потомство.
Наблюдение 3. Во всех популяциях существует изменчивость. Огромный фактический материал, собранный во время путешествий Дарвином и Уоллесом убедили их в значимости внутривидовой изменчивости.
Вывод 2. В «борьбе за существование» те особи, признаки которых наилучшим образом приспособлены к условиям жизни, обладают «репродуктивным преимуществом» и производят больше потомства, чем менее приспособленные особи. Решающий фактор, определяющий выживание, - это приспособленность к среде.
Говоря о естествознании как донаучном, преднаучном и научном, выделяя тем самым этапы развития собственно естествознания, необходимо сказать, что на самом деле вплоть до научного этапа, то есть до XVII века эволюция естествознания происходила в рамках натурфилософии. Вплоть до оформления естествознания как совокупности дисциплин, изучающих природу на основе математических принципов, оно развивалось как совокупность сведений об устройстве природе. Отсутствовали атрибуты, столь характерные для современного естествознания, - техника и математизация.
Само понятие «естествознание» носит обобщающий характер. Очевидно, что оно лишь констатирует факт возникновения совокупности дисциплин, исследующих природу. В основании этой совокупности уже со времён Аристотеля лежит физика. Именно она почти до XX века определяла нормативы научно-исследовательской деятельности в области естествознания, и не только его. Разумеется, современное знание не может быть охарактеризовано только как естественнонаучное и даже как только научное. К началу XXI века вследствие интеграционных процессов, возникших в науке благодаря развитию кибернетики, общей теории систем, синергетики, вследствие глобализации информационных процессов, прежде очевидные и чётко определяемые границы естествознания были размыты.
Тем не менее, в современной системе знания мы можем выделить, как минимум, четыре относительно самостоятельных типа: гуманитарное знание, техническое знание, математическое знание и естествознание.
Структура естествознания основана на общем определении естествознания как совокупности наук о природе («естестве»). Понятно, что это весьма расплывчатое определение, которое позволяет сводить воедино такие трудно сопоставимые дисциплины, как, например, биологию и геологию. Тем не менее, в самом общем смысле структура естес
Узнайте стоимость работы онлайн!
Предлагаем узнать стоимость вашей работы прямо сейчас.
Это не займёт
много времени.
Узнать стоимость
girl

Наши гарантии:

Финансовая защищенность
Опытные специалисты
Тщательная проверка качества
Тайна сотрудничества