По алфавиту:

Указатель категорий Основы безопасности жизнедеятельности (ОБЖ) Единицы измерения концентрации радиоактивных веществ

Единицы измерения концентрации радиоактивных веществ

ВУЗ: БГЭУ
Тип работы: Реферат
Предмет: Основы безопасности жизнедеятельности (ОБЖ)
Количество страниц: 23
Язык документа: Русский
Год сдачи: 2008
Cкачиваний: 3
Последнее скачивание: 2011-01-17

Содержание.

Введение 2
1. Дозы излучения и единицы измерения 5
2. Воздействие радиации на человека 14
Заключение 20
Список использованных источников 23

Описание.

Реферат по основам безопасности жизнедеятельности (ОБЖ) на тему Единицы измерения концентрации радиоактивных веществ. Реферат + презентация.

Явление радиоактивности было открыто в 1896 году французским ученым Анри Беккерелем, В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиоактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. В больших объемах образуются искусственные радионуклиды, главным образом в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики. Попадая в окружающую среду они оказывают воздействия на живые организмы, в чем и заключается их опасность. Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды, о выгодах, которые приносят производства, основным или побочным продуктом которых являются радионуклиды, и потерях, связанных с отказом от этих производств, о реальных механизмах действия радиации, последствиях и существующих мерах защиты.
В массовом сознании населения доминирует настороженное отношение к производствам, деятельность которых приводит к образованию радиоактивных изотопов и в первую очередь к предприятиям ядерного цикла. Этому способствуют как объективные (крупные аварии), так и субъективные (некомпетентность, искаженная картина в средствах массовой информации) факторы. При этом не принимаются во внимание два обстоятельства.
Первое - это необходимость сравнительного подхода. Например, ценой за использование автомобиля являются десятки тысяч людей, ежегодно погибающих в авариях, еще большее количество получает травмы. Происходит загрязнение окружающей среды выхлопными газами автомобилей, особенно в густонаселенных городах. И это далеко не полный перечень негативных последствий от использования автомобильного транспорта.
Второе обстоятельство — это экономическая и технологическая необходимость использования атомной энергии в современном мире.
Привлекательность использования АЭС связана с ограниченностью и постоянным ростом стоимости энергоносителей для тепловых электростанций, меньшими радиоактивными и значительно более низкими химическими загрязнениями окружающей среды, гораздо меньшими объемами транспортных перевозок у предприятий ядерного цикла, отнесенными к единице производимой в конечном счете электроэнергии, по сравнению с аналогичными показателями для предприятий топливного цикла.
Альтернативы использованию АЭС в глобальной экономике в настоящее время нет, а в обозримом будущем она может появиться только со стороны термоядерных установок.
Первая в мире опытно-промышленная АЭС мощностью в 5 МВт была пущена в СССР 27 июня 1954 г. в г. Обнинске. В последующий период производство электроэнергии на АЭС быстро росло и в настоящее время в развитых странах они превратились в основного поставщика электроэнергии.
Работа предприятий ядерного цикла в режиме нормальной эксплуатации не наносит человеку сколько-нибудь заметного вреда и значительно безопаснее последствий других видов деятельности. Аварии на АЭС значительно увеличивают экологическую угрозу, но не в большей степени, чем аварии на крупных химических производствах, бесконтрольное использование пестицидов и минеральных удобрений, аварии на транспорте и т.д.
Следует также иметь в виду, что радиация, связанная с нормальным развитием ядерной энергетики, составляет лишь малую долю радиации, порождаемой деятельностью человека. Значительно большие дозы мы получаем от других источников, вызывающих меньше нареканий. Применение рентгеновских лучей в медицине, сжигание угля, использование воздушного транспорта, пребывание в хорошо герметизированных помещениях могут привести к значительному увеличению уровня облучения.
Отметим, что и зарождение жизни на Земле и ее последующая эволюция протекали в условиях постоянного воздействия радиации.
Хорошее знание свойств радиации и ее воздействия позволяет свести к минимуму связанный с ее использованием риск и по достоинству оценить те огромные блага, которые приносит человеку применение достижений ядерной физики в различных сферах.

Выдержка из работы.

Активность радионуклида в источнике (А). Активность равна отношению числа самопроизвольных ядерных превращений в этом источнике за малый интервал времени (dN) к величине этого интервала (dt) [2, 29] :
A = dN/dt
Единица активности в системе СИ - Беккерель (Бк).
Внесистемная единица - Кюри (Ки).
Число радиоактивных ядер N(t) данного изотопа уменьшается со временем по закону:
N(t) = N0 exp(-tln2 / T1/2) = N0 exp(-0.693t / T1/2)
где No - число радиоактивных ядер в момент времени t = 0, Т1/2 -период полураспада - время, в течение которого распадается половина радиоактивных ядер.
Массу m радионуклида активностью А можно рассчитать по формуле :
m = 2.4*10-24 M T1/2 A
где М - массовое число радионуклида, А - активность в Беккерелях, T1/2 - период полураспада в секундах. Масса получается в граммах.
Экспозиционная доза (X). В качестве количественной меры рентгеновского и -излучения принято использовать во внесистемных единицах экспозиционную дозу, определяемую зарядом вторичных частиц (dQ), образующихся в массе вещества (dm) при полном торможении всех заряженных частиц [2, 31]:
X = dQ/dm
Единица экспозиционной дозы - Рентген (Р). Рентген - это экспозиционная доза рентгеновского и -излучения, создающая в 1куб.см воздуха при температуре О°С и давлении 760 мм рт.ст. суммарный заряд ионов одного знака в одну электростатическую единицу количества электричества.
Экспозиционной дозе 1 Р соответствует 2.08*109 пар ионов (2.08*109 = 1/(4.8*10-10)). Если принять среднюю энергию образования 1 пары ионов в воздухе равной 33.85 эВ, то при экспозиционной дозе 1 Р одному кубическому сантиметру воздуха передается энергия, равная:
(2.08*109)*33.85*(1.6*10-12) = 0.113 эрг,
а одному грамму воздуха:
0.113/ возд = 0.113/0.001293 = 87.3 эрг.
Поглощение энергии ионизирующего излучения является первичным процессом, дающим начало последовательности физико-химических преобразований в облученной ткани, приводящей к наблюдаемому радиационному эффекту. Поэтому естественно сопоставить наблюдаемый эффект с количеством поглощенной энергии или поглощенной дозы.
Поглощенная доза (D) - основная дозиметрическая величина. Она равна отношению средней энергии dE, переданной ионизирующим излучением веществу в элементарном объеме, к массе dm вещества в этом объеме:
D = dE/dm
Единица поглощенной дозы - Грей (Гр). Внесистемная единица Рад определялась как поглощенная доза любого ионизирующего излучения, равная 100 эрг на 1 грамм облученного вещества.
Эквивалентная доза (Н). Для оценки возможного ущерба здоровью человека в условиях хронического облучения в области радиационной безопасности введено понятие эквивалентной дозы Н, равной произведению поглощенной дозы Dr, созданной облучением - r и усредненной по анализируемому органу или по всему организму, на весовой множитель wr (называемый еще - коэффициент качества излучения) (таблица 2) [2, 33].

Единицей измерения эквивалентной дозы является Джоуль на килограмм. Она имеет специальное наименование Зиверт (Зв).
 

Список литературы.

1. Биологическое действие продуктов ядерного деления. Метаболизм и острые поражения - Радиобиология, 1992, т.32, в.1, с.69-78.
2. Биологическое действие продуктов ядерного деления. Отдаленные последствия поражения - Радиобиология, 1993, т.ЗЗ, в.З, с. 442-452.
3. Василенко И.Я. - Радиационные поражения продуктами ядерного деления - Здравоохранение Белоруссии. 1986, N12., с.68.
4. Василенко О.И. Радиационная экология. – М.: Медицина, 2004. – 216 с.
5. Информация об аварии на Чернобыльской АЭС и ее последствиях, подготовленная для МАГАТЭ - Атомная энергия, 1986. т, 61, вып. 5.,с. 301-320.
6. Холл Э.Дж. - Радиация и жизнь - М., Медицина, 1989.
7. Ярмоненко С.П. - Радиобиология человека и животных- М., Высшая школа, 1988.

Похожие работы:
© 2009-2021 Все права защищены — dipland.ru