По алфавиту:

Указатель категорий Математические методы экономики Интегралы

Интегралы

Тип работы: Курсовая работа
Предмет: Математические методы экономики
Количество страниц: 23
Год сдачи: 2008
Последнее скачивание: не скачивался

Содержание.

Введение
-Основной задачей дифференциального исчисления является нахождение производной или дифференциала данной функции. Интегральное исчисление решает обратную задачу – нахождение самой функции по ее производной или дифференциалу [1-4].
Составим и решим задачу, раскрывающую экономический смысл определенного интеграла [2]. Пусть функция z=f(t) описывает изменение производительности некоторого производства с течением времени. Найдем объем продукции u, произведенной за промежуток времени [0; T].
Отметим, что если производительность не изменяется с течением времени (f(t) – постоянная функция), то объем продукции Δu, произведенной за некоторый промежуток времени [t, t+Δt], задается формулой Δu= f(t) Δt. В общем случае справедливо приближенное равенство Δu= f(ξ) Δt, где ξ [t, t+Δt], которое оказывается тем более точным, чем меньше Δt.
Разобьем отрезок [0; T] на промежутки времени точками: 0=t0

Описание.

Основные методы решения определенных интегралов.
1. Непосредственное интегрирование.
Этот способ основан на использовании свойств определенного интегра-ла, приведении подынтегрального выражения к табличной форме путем тож-дественных преобразований и применении формулы Ньютона-Лейбница.
2. Интегрирование подстановкой.
Для решения определенного интеграла методом подста-новки заменяют g(x)=t; dt=g'(x)dx и находят пределы изменения переменной t при изменении x от a до b из соотношений: g(a)=α и g(b)=β.
Тогда = , где F(t)-первообразная функции f(g(x))=f(t).
3. Интегрирование по частям.
При этом способе используют формулу: (**)
Подробные рекомендации по решению интегралов по частям даны в описании этого метода применительно к неопределенным интегралам.
Рассмотрим решение типовых задач.
Задача 1. Вычислить
Решение. Данный интеграл решим непосредственным интегрировани-ем. Сначала преобразуем подынтегральное выражение:
= .
Применим свойства 6 и 5, в результате чего получим

Так как оба интеграла табличные, записываем первообразные функции и применяем формулу Ньютона-Лейбница:

Задача 2. Вычислить
Решение. Решаем интеграл методом подстановки. Введем новую пере-менную t=4-x и продифференцируем данное равенство: dt=d(4-x); dx=-dt. Найдем новые пределы интегрирования из соотношения t= 4-x: при x1=0 по-лучаем t1=4,
при x2=2 получаем t2=2.
Делаем замену переменной в заданном интеграле:

Избавимся от знака минус перед интегралом, воспользовавшись свой-ством 3:

Задача 3. Вычислить
Решение. Будем решать интеграл методом интегрирования по частям. Обозначим lnx=u, dx=dv и найдем du=d(lnx)=dx/x и v=∫dx=x. Применяя к за-данному интегралу формулу интегрирования по частям, получим
.
Рассмотрим задачи на геометрические приложения определенного ин-теграла.
Задача 4. Вычислите площадь фигуры, ограниченной графиками функций
Y=x-x2, y=0.
Решение. Площадь криволинейной трапеции, ограниченной графиком функ-ции y=f(x), прямыми x=a, x=b и осью OX, равна

Найдем координаты точек пересечения графиков:
x-x2=0, x1=0, x2=1.
A(0,0), B(1,0).
Преобразуем уравнение параболы.
Y=-(x2-x+1/4)+1/4, y-1/4=-(x-1/2)2.

Задача 5. Требуется вычислить площадь фигуры, ограниченной линиями.

Решение. Найдем точки пересечения кривых.
Решаем биквадратное
уравнение.

т.к. значение должно быть положительным,
Таким образом, Ординаты этих значений
равны:

Вычислим площадь фигуры:


ед2.
Задача 6. Вычислить площадь фигуры, ограниченной функциями

Решение.
Построим графики заданных функций.

Рис. 6.
Т.к. фигура лежит ниже оси ОХ, формула вычисления площади имеет вид:

Первое слагаемое есть площадь прямоугольника со сторонами 4 и 2, т.к. при y=-2 x=4, т.е. M(4; -2) – точка пересечения линий.
Задача 7. Вычислить объем тела, полученного от вращения фигуры, ограни-ченной линиями y=e-x, y=0, x=0, x=1 вокруг оси OX.
Решение.
Используем формулу вычисления объема тела вращения:
(2)
Тогда, по формуле (2), искомый объем

Задача 8. Вычислить несобственный интеграл или доказать его расходимость:

Решение.
Интеграл имеет особенность в точке x= , т.к. .

Разложим подинтегральную дробь на простейшие.

Список литературы.

1. Владимирский Б.М., Горстко А.Б., Ерусалимский Я.М. Математика. Общий курс. – СПб.: Издательство «Лань», 2004. – 960с.
2. Высшая математика для экономистов. Под ред. проф. Н.Ш.Кремера. – М.: ЮНИТИ, 2002. – 471с.
3. Кудрявцев Л.Д. Краткий курс математического анализа. В 2-х т.: Т.1. Дифференциальное и интегральное исчисления функции одной переменной. – Висагинас: «Alfa», 1998. – 384с.
4. Пискунов Н.С. Дифференциальное и интегральное исчисления. Т.1. – М.: Наука, 2002. – 456с.
5. Практикум по высшей математике для экономистов. Под ред. проф. Н.Ш.Кремера. – М.: ЮНИТИ-ДАНА, 2002. – 423с.
Похожие работы:
© 2009-2021 Все права защищены — dipland.ru