Биология - готовые работы

fig
fig
1.
Азот — это основной питательный элемент для всех растений: без азота невозможно образование белков и многих витаминов, особенно витаминов группы В. Наиболее интенсивно растения поглощают и усваивают азот в период максимального образования и роста стеблей и листьев, поэтому недостаток азота в этот период сказывается в первую очередь на росте растений: ослабляется рост боковых побегов, листья, стебли и плоды имеют меньшие размеры, а листья становятся бледно-зелеными или даже желтоватыми.
Фосфор способствует повышению зимостойкости растений, ускоряет их развитие и созревание, стимулирует плодоношение, благоприятствует интенсивному нарастанию корневой системы, чем повышает их засухоустойчивость. Растения наиболее чувствительны к недостатку фосфора в самом раннем возрасте, когда их слаборазвитая корневая система плохо усваивает питательные вещества.
Калий играет весьма разнообразную роль в жизни растений: поддерживает необходимый водный режим в них, способствует образованию Сахаров и накоплению их в товарной части продукции, повышает морозо- и засухоустойчивость, снижает поражаемость заболеваниями. При скудном питании калием в растении происходит его перераспределение: из старых органов он переходит в более молодые, способствуя их развитию. При недостатке калия угнетается развитие плодов, бутонов и зачаточных соцветий.
Магний входит в состав хлорофилла, что определяет его важное значение в жизни растений: он участвует в углеводном обмене, действии ферментов и в образовании плодов. При недостаточном количестве магний усиленно передвигается из листьев в репродуктивные органы.
Кальций влияет на обмен углеводов и белковых веществ, а также на обеспечение нормальных условий развития корневой системы растений.
Сера входит в состав белков, витаминов, горчичных и чесночных масел. Больше всех других серу содержат и нуждаются в ней растения семейства крестоцветных, а также бобовые и картофель.
Железо в растениях содержится в незначительных количествах. Физиологическая роль железа заключается в том, что оно входит в состав ферментов, а также участвует в синтезе хлорофилла, в дыхании и в обмене веществ.
Бор способствует усилению роста пыльцевых трубок и прорастанию пыльцы, увеличению количества цветков и плодов, а его отсутствие нарушает процесс созревания семян. Бор положительно влияет на устойчивость растений к грибковым, бактериозным и вирусным заболеваниям.
Марганец необходим всем растениям: он способствует увеличению содержания хлорофилла в листьях, синтезу аскорбиновой кислоты (витамина С) и Сахаров, улучшает отток Сахаров из листьев в запасающие органы и плоды, регулирует водный режим, повышает устойчивость к неблагоприятным факторам, влияет на плодоношение и способствует ускорению их развития.
Медь играет специфическую роль в жизни растений: регулирует фотосинтез и концентрацию образующихся в растении ингибиторов роста, водный обмен и перераспределение углеводов, входит в состав ферментов, повышает устойчивость к полеганию и способствует их морозо-, жаро- и засухоустойчивости.
Цинк играет важную роль в белковом, углеводном и фосфорном обмене, в биосинтезе витаминов и ростовых веществ (ауксинов), а при резкой смене температур повышает жаро- и морозоустойчивость растений.
Актуальность темы
Существующая в настоящее время сложная эпидемиологическая ситуация обосновывает повышенное внимание к профилактике инфекционных заболеваний и рост требований к качеству дезинфекционных мероприятий, направленных на уничтожение возбудителей инфекций на объектах окружающей среды, являющихся факторами их передачи.
Проблема ВБИ и инфекционного контроля является приоритетной по ряду причин, к которым относятся следующие:
1) смертность от ВБИ в медицинских стационарах выходит на первое место;
2) инфекция, полученная больным в стационаре, значительно удорожает его лечение, т.к. предполагает использование дорогостоящих антибиотиков и увеличивает сроки госпитализации;
3) инфекции - основная причина болезни и смерти новорожденных, особенно недоношенных (например, у 25 % недоношенных детей в отделении интенсивной терапии развивается сепсис, делая частоту смерти в 2 раза выше и госпитализацию длиннее);
4) потеря трудоспособности в связи с ВБИ несет значительные финансовые пр
Работоспособность — физиологическое состояние человека, совершающего физический или умственный труд, — имеет 3 стадии: 1) врабатывания, или нарастающей работоспособности; 2) устойчивой, или оптимальной, работоспособности; 3) истощения, когда вследствие утомления продуктивность работы падает. Знание стадий работоспособности позволяет правильно организовать отдых. Облегчает любую деятельность четкий распорядок дня — режим. При его выполнении образуются условные рефлексы на время. Они выстраиваются в четкий динамический стереотип, который сокращает время врабатывания, удлиняет фазу устойчивой работоспособности и дает возможность наиболее рационально сочетать труд, еду, отдых, спорт.
Электрофорез – это метод разделения веществ в зависимости от их молекулярной массы и заряда [7,9,10].
В последние годы благодаря развитию аналитических методов изучение белков приобретает все возрастающее значение как в химических, биохимических и медицинских исследованиях, так и в клинической практике.
В качестве материала используют химические вещества, органические вещества, белки биологических жидкостей.
Методы электрофореза позволяют установить нормальное процентное содержание белковых фракций сыворотки и выяснить значение его отклонений от нормы.
В данной работе были рассмотрены и изучены понятие электрофореза, принципы работы, методы; состав крови, основные болезни крови.
В качестве исследуемого материала использовали белки крови человека, а именно иммуноглобулины как здорового человека так и больного. Была представлена электроиммунофореграмма при иммуноглобулинопатиях, миеломных болезнях и дана принципиальная их характеристика и картина протекания болезни.
Основными методами электрофореза являются: электрофорез на бумаге, электрофорез в крахмальном геле, электрофорез в агаровом геле, на ацетат-целлюлозной мембране, в полиакриламидном геле.
В методической части рассмотрена возможность введения в курс школьной программы темы – Электрофорез белков. Учитывая понятия электрофореза, принципы методов, этот курс можно ввести в следующие предметы – химия органическая и биология в старших классах.
Актуальность темы.
Заболевание крови очень распространенное явление среди населения. Наиболее часто встречаемыми являются миеломные болезни, т.е. рак крови, недостаток иммуноглобулинов, анемии и т.д.
Состояние здоровья населения приводит к глубоким медико-биологическим исследованиям, дальнейшим улучшением лечебно-диагностической работы, усовершенствованием охраны здоровья. На теперешний час диагностика и терапия болезней крови составляет приоритетный раздел современной науки и практики. Учитывая характер и распространение этих заболеваний в природе, данная проблема важна не только для медиков, но и для специалистов, которые берут участие в разработке профилактики и открытию химических соединений, которые используются в терапии.
Основные задачи и цели работы.
Основной задачей работы является изучение понятия электрофореза, раскрытие его принципов и методик, рассмотрение процесса электрофореза на примерах заболевания крови, т.е. лабораторное определение заболевания с дальнейшей их идентификацией, исследование крови как здорового, так и больного человека.
Основной целью является изучение процесса электрофореза при некоторых заболеваниях крови; рассмотрение возможности внесения в школьный курс – метод электрофореза.
1. Введение
Биотехнология на сегодня определяется как удовлетворение потребностей человека с помощью живых организмов (клеток микроорганизмов, растений, животных, и т.п.) – естественных и генетически измененных, или продуктов их деятельности.
Современное состояние биотехнологических исследований в Украине нельзя оценить однозначно. С одной стороны, Украина имеет мощный кадровый научный потенциал, способный решить сложнейших проблемы биотехнологии и создать все необходимые для народа Украины продукты с применением сложнейших и наиболее современных методических подходов (генетики, генетической инженерии, клеточной инженерии). Научные работники Украины только за годы ее независимости разработали несколько конкурентоспособных биотехнологий, которые сегодня уже готовые к внедрению (дрожжи и микроорганизмы надсинтетики аминокислот, антибиотиков, факторов роста; технологии получения лекарства и биотехнологии получения новых пищевых и кормовых препаратов; естественных экологически чистых консервантов; биотехнологии очистки сточных вод и ликвидации антропогенных загрязнений; биотехнологии создания принципиально новых лекарственных препаратов, интерферонов, и т.п.). Несколько из этих биотехнологий введено на предприятиях Украины: производство пробиотиков лекарственного и ветеринарного назначения на ОАО Днепрофарм (г. Днепропетровск); ( - каротина - на Верхнем-Днепровском крохмало-патоковому комбинате; производство клея на полисахаридной основе на Ирпенском комбинате "Прогресс"; ферментов и полисахаридов - на Ладижинском комбинате "Энзим". Тем не менее, внедрение новых биотехнологий было бы намного больше, если бы промышленность Украины была способна воспринять их. Одной из причин, которая тормозит внедрения разработок, является консерватизм мышления руководителей министерств и предприятий, их нежелание наладить производство отечественных продуктов и препаратов. Второй причиной есть неспособность руководителей предприятий принять условия рыночной экономики, их абсолютная безинициативность. Примером может служить опыт внедрения в Украине, молочнокислого продукта "Геролакт" с четко выраженным антирадиационным и витаминным действием. После неудачных попыток внедрить этот препарат в Украине, лицензия на его изготовление была продана Дании, и этот продукт под названием “Гайо” пленил почти все страны мира. Нет его только в Украине и странах СНГ.
Но главнейшая причина невосприимчивости промышленности Украины к новым биотехнологиям - это отсталость производственной базы ее предприятий. Необходимое срочное переоснащение существующих заводов и создания новых, с принципиально новым идейным подходом к организации производств.
Сейчас, несмотря на экономические трудности, к внедрению готовы десятки новых биотехнологий. К сожалению, ни микробиологическая, ни пищевая, ни химико-фармацевтическая промышленность неспособны сегодня внедрять их. Разработчикам приходится продавать лицензии на эти разработки за границу на довольно кабальных условиях. Украина тратит десятки миллионов долларов на закупку за границей этих продуктов, в то время как эти средства можно было бы затратить на модернизацию упомянутых областей промышленности. Практически даже те лекарства и продукты, которые до этого времени выпускались в Украине, перестали вырабатываться, а заводы, которые их выпускали, перепрофилированные на фассовку пуловых количеств закупленных за границей лекарства, реактивов и, даже, кисломолочных продуктов и сухих заквасок. Закупка за границей которые товаров, что Украина может сама выпускать, это путь к переходу от высоко - прибыльного, высококапитализированого, наукоемкого биотехнологического производства, к малоприбыльным, экологически - опасным производствам, которые будут принадлежать иностранным корпорациям.

На сегодняшний день биотехнология развивается в следующих направлениях:
¬ пищевая промышленность;
¬ медицина;
¬ сельское хозяйство;
¬ металлургия;
¬ приборостроение;
¬ экология;
¬ кибернетика;
¬ ферментная промышленность;
Все вышеперечисленные направления биотехнологии не есть самодостаточными, то есть все направления биотехнологии тесно интегрированы с другими не только направлениями биотехнологии, но и с другими науками и технологиями. Как пример интеграции с другими науками можно привести пример интеграции с физикой (например, использование ЯМР, ЭМР спектров для анализа химических субстанций), химии, информатики, математического моделирования, астрономии, менеджмента, маркетинга и прочих. Как пример внутренней интеграции направлений биотехнологии можно привести пример интеграции ферментной промышленности с пищевой промышленностью, медициной, сельским хозяйством, металлургией, приборостроением, экологией, кибернетикой (создание элементов памяти в качестве запоминающего элемента используется измененный при помощи ферментов бактериорадопсин, пурпурные мембраны [1]), прочие. Во всех выше перечисленных направлениях биотехнологии необходимо проводить высококачественную стерилизацию, а также разрушать отходы биотехнологических производств.
Подавление роста или уничтожение патогенных бактерий осуществляют с помо¬щью различных химических или физических факторов. Они оказывают неизбирательное (ис¬пользуются для обеззараживания помещений, бытовых предметов и медицинского инструмента¬рия и т.д.) или избирательное (применяются в качестве химиотерапевтических средств) противомикробное действие. Основу профилактики и борьбы с инфекциями составляют методы прямого (непосредственного) и косвенного (опосредованного) воздействия. Прямые методы включают комплекс физических и химических воздействий, направленных на уничтожение патогенов с помощью непосредственно повреждающих воздействий. В частности, дезинфекция позволяет значительно уменьшить число патогенных микроорганизмов на объектах внешней среды, а стерилизация - полностью их элиминировать. Дезинфекцию можно проводить по¬стоянно с определённой периодичностью (профилактическая дезинфекция). Наиболее распространённые типы дезинфектантов приведены в табл. 1.
Биотехнология – интегрированное использование биохимии, микробиологии и биоинженерии для промышленной реализации потенциальных возможностей микроорганизмов, культур клеток, тканей или отдельных их частей ДСТУ 3803-98.
Основной целью биотехнологии является получение максимального количества целевых продуктов в границах генетически детерминирующих свойств биологического агента за счет оптимизации факторов окружающей среды.
Производство антибиотиков занимает одно из ведущих мест в современной медицинской биотехнологии и относится к отраслям, сфера применения которых постоянно растет. Это связано с тем, что антибиотики, являясь веществами и образуемые микроорганизмами или получаемые из других природных источников, обладают антибактериальным, антивирусным и противоопухолевым действием. Они вмешиваются в обмен белков, нуклеиновых кислот и в энергетические процессы пораженных организмов и клеток, избирательно воздействуя на определенные молекулярные механизмы.
Создание новой биотехнологии производства антибиотиков опирается на достижение молекулярной биологии, молекулярной генетики и генной инженерии. В настоящее время разрабатывается перспективное направление, основанное на предположении о биосинтезе антибиотиков или их отдельных ключевых структур, например трипептида -L--аминоадитинил-L-цистеинил-D-валина, при биосинтезе пенициллинов и цефалоспоринов, поликетидном синтезе углеродного скелета тетрациклинов, агликонов у макролидов и в других случаях, в мультиферментных комплексах, являющихся вторичным продуктом полигенного оперона транскрипта, как это уже установлено для антибиотиков, имеющих пептидное строение, а также для ферментов, катализирующих реакции основных путей метаболизма.
Создание новой биотехнологии производства антибиотиков предполагает возможность использования мощных индукторов биосинтеза нуклеиновых кислот и белков-ферментов, вследствие чего резко увеличивается концентрация первичных метаболитов, из которых при участии соответствующих ферментов образуются антибиотики.
За последние годы фармацевтическая наука достигла значительных успехов: разработаны научные основы и созданы более перспективные технологии при получении лекарственных средств, в производство внедрено современное технологическое оборудование, используются новые группы лекарственных и вспомогательных веществ, созданы высокоэффективные лекарственные препараты.
Дальнейшее развитие фармацевтической отрасли предусматривает углубление и совершенствование знаний об основных аппаратах и технологических линиях фармацевтического производства, дальнейшее внедрение прогрессивных технологий, разрешение наиболее сложных проблем гидродинамических, тепловых, массообменных и других процессов.
Рациональное приготовление лекарственных препаратов, создание их новых видов, изыскание более совершенных методов производства требуют глубоких знаний отдельных технологических операций 1.
В промышленных условиях выпускаются различные антибиотики. Биосинтез антибиотиков происходит в клетках, прошедших стадию интенсивного роста (трофофазу), то есть в микроорганизмах, прекративших рост (идиофазу). В связи с этим антибиотики относятся к метаболитам-идиолитам. Они в неблагоприятных условиях подавляют рост конкурирующих микроорганизмов, обеспечивая тем самым более благоприятные условия для выживания микроба-продуцента того или иного антибиотика. Значение процесса антибиотикообразования в жизнедеятельности микробной клетки подтверждается тем, что у тетрациклинов около 1 геномной ДНК приходится на долю генов, кодирующих ферменты биосинтеза антибиотиков, которые в течение продолжительного времени могут не экспрессироваться.
Тетрациклин относится к группе антибиотиков, получаемые из стрептомицетов, который выпускается как на Украине, так и за рубежом. Эти антибиотики обладают широким спектром антимикробного действия: бактериостатическое или фунгиостатическое, задерживающее рост и развитие бактерий или грибов. Механизм действия: нарушают синтез белка.
Тетрациклины широко распространены в природе, которые синтезируются микроорганизмами на среде, содержащей кукурузную муку, кукурузный экстракт, а также другие питательные вещества, обусловливающие биосинтез антибиотика.
Основными задачами курсового проекта является: рассмотрение возможных вариантов технологических схем производства, выбор оптимальной и обоснование выбора технологической схемы и оборудования; проанализировать и рассчитать процесс; найти оптимальные его параметры; разработать и рассчитать аппаратуру, необходимую для проведения этого процесса, изучение эффективности технологического процесса, основными показателями которого являются расход сырья, энерго- и трудозатраты на единицу продукции, выход и качество готовой продукции, интенсивность процесса, себестоимость продукции.
Присутствие биологического агента влияет на технологическое и аппаратурное оформление производства: необходимость ряда специфических условий герметизации и введения субстратов; соблюдения узких физико-химических показателей среды; учета влияния срезовых усилий. Таким образом, возникает необходимость описания культуральных и морфолого-физиологических показателей биологического агента.
Присутствие БАВ обуславливает специфику технологического оборудования. В связи с этим будут рассмотрены физико-химические свойства готового продукта – медицинского препарата тетрациклина, а также другие его характеристики.
Существует три способа получения антибиотиков:
1. биологический синтез, используя высокопродуктивные штаммы микроорганизмов;
2. химический синтез. С помощью этого метода получают все синтетические антибиотики.
3. Комбинированный способ.
...
17. Гайморова пазуха относится:
а) к носовым костям;
б) к лобной кости;
в) к верхнечелюстной кости.
Узнайте стоимость работы онлайн!
Предлагаем узнать стоимость вашей работы прямо сейчас.
Это не займёт
много времени.
Узнать стоимость
girl

Наши гарантии:

Финансовая защищенность
Опытные специалисты
Тщательная проверка качества
Тайна сотрудничества