По алфавиту:

Указатель категорий Физика Неметаллические материалы

Неметаллические материалы

Тип работы: Реферат
Предмет: Физика
Язык документа: Русский
Год сдачи: 2008
Последнее скачивание: не скачивался

Описание.

Общие сведения о неметаллических материалах

Выдержка из работы.

Неметаллические материалы

Нижнекамский Химико-Технологический  Институт

2005 г.

1. Общие сведения  о неметаллических  материалах

Понятие неметаллические  материалы включает большой ассортимент  материалов таких, как пластические массы, композиционные материалы, резиновые  материалы, клеи, лакокрасочные покрытия, древесина, а также силикатные стекла, керамика и др.

Неметаллические материалы являются не только заменителями металлов, но и применяются как  самостоятельные, иногда даже незаменимые  материалы. Отдельные материалы  обладают высокой механической прочностью, легкостью, термической и химической стойкостью, высокими электроизоляционными характеристиками, оптической прозрачностью  и т. п. Особо следует отметить технологичность неметаллических  материалов.

Применение неметаллических  материалов обеспечивает значительную экономическую эффективность.

Основой неметаллических  материалов являются полимеры, главным  образом синтетические. Создателем структурной теории химического  строения органических соединений является великий русский химик А. М. Бутлеров. Промышленное производство первых синтетических  пластмасс (фенопластов) явилось результатом  глубоких исследований, проведенных  Г. С. Петровым (1907—'1914 гг.). Блестящие  исследования позволили С. В. Лебедеву впервые в мире осуществить промышленный синтез каучука (1932 г.). Н. Н. Семеновым  разработана теория цепных реакций (1930—1940 гг.) и распространена на механизм цепной полимеризации.

Успешное развитие химии и физики полимеров связано  с именами видных ученых: П. П.. Кобеко, В. А. Каргина, А. П. Александрова, С. С. Медведева, С. Н. Ушакова, В. В. Коршака и др. Важный вклад внесен К. А. Андриановым в развитие химии кремнийорганических полимеров, широко применяемых в качестве термостойких материалов.

1.1. Понятие о неметаллических  материалах и классификация  полимеров 

Полимерами называют вещества, макромолекулы которых  состоят из многочисленных элементарных звеньев (мономеров) одинаковой структуры. Молекулярная масса их составляет от 5000 до 1000 000. При таких больших  размерах макромолекул свойства веществ  определяются не только химическими  составами этих молекул, но и их взаимным расположением и строением.

Макромолекулы полимера представляют собой цепочки, состоящие  из отдельных звеньев. Поперечное сечение  цепи несколько ангстрем, а длина  несколько тысяч ангстрем, поэтому  макромолекулам полимера свойственна  гибкость (которая ограничена размером сегментов — жестких участков, состоящих из нескольких звеньев). Гибкость макромолекул является одной из отличительных  особенностей полимеров.

Атомы, входящие в  основную цепь, связаны прочной химической (ковалентной) связью. Энергия химических связей (в ккал/моль) составляет вдоль  цепи 80 для С — С, 79 для С — О, 66 для С — N. Силы межмолекулярного взаимодействия, имеющие обычно физическую природу, значительно (в 10 — 50 раз) меньше. Например, прочность межмолекулярных связей электростатического характера не превышает 9 ккал/моль. Однако в реальных полимерах такие суммарные силы имеют значение вследствие большой протяженности цепевидных макромолекул. Наиболее сильные межмолекулярные взаимодействия осуществляются посредством водородных связей (только в 4—10 раз слабее ковалентных). Таким образом, молекулы полимеров характеризуются прочными связями в самих макромолекулах и относительно слабыми между ними. В некоторых полимерах между звеньями, входящими в состав соседних макромолекул, действуют силы химической связи. Такие вещества характеризуются высокими свойствами во всех направлениях.

Макромолекулы полимеров, имея одинаковый химический состав, обычно отличаются по размерам. Это явление, вызывающее рассеяние физико-механических характеристик материала, называется полидисперсностью.

Макромолекулы могут  быть построены из одинаковых по химическому  строению мономеров или разнородных  звеньев. В первом случае соединения называются гомоиолимерами (или полимерами), во втором — сополимерами. Иногда макромолекула вещества состоит из чередующихся крупных химически однородных отрезков (блоков) разного состава (блок-сополимеры).

Можно в процессе синтеза к главной молекулярной цепи, состоящей из одних мономеров, «привить» отрезки из других мономеров, тогда получают так называемые привитые сополимеры.

Когда основная цепь построена из одинаковых атомов, полимер  называют гомоцепным, из разных гетероцепным. Большое значение имеет стереорегулярность полимера, когда все звенья и заместители расположены в пространстве в определенном порядке. Это придает материалу повышенные физико-Механические свойства (по сравнению с нерегулярными полимерами).

Полимеры встречаются  в природе — натуральный каучук, целлюлоза, слюда, асбест, природный  графит. Однако ведущей группой являются синтетические полимеры, получаемые в процессе химического синтеза  из низкомолекулярных соединений. Возможности  создания, новых полимеров и изменения  свойств уже существующих очень  велики. Синтезом можно получать полимеры с разнообразными свойствами и даже создавать материалы с заранее заданными характеристиками.

Классификация полимеров. Для удобства изучения связи состава, структуры со свойствами полимеров  их можно классифицировать по различным  признакам (составу, форме макромолекул, фазовому состоянию, полярности, отношению  к нагреву). По составу все полимеры подразделяют на органические, элементоорганические, неорганические.

Органические полимеры составляют наиболее обширную группу соединений. Если основная молекулярная цепь таких соединений образована только углеродными атомами, то они называются карбоцепными полимерами. Углеродные атомы соединены с атомами- водорода или органическими радикалами.

В гетероцепных полимерах  атомы других элементов, присутствующие в основной цепи, кроме углерода, существенно изменяют свойства полимера. Так, в макромолекулах атомы кислорода  способствуют повышению гибкости цепи, что приводит к увеличению эластичности полимеров (например, для волокон, пленок), атомы фосфора и ,хлора повышают огнестойкость, атомы серы придают газонепроницаемость (для герметиков, резин), атомы фтора, даже в виде радикалов, сообщают полимеру высокую химическую стойкость и т. д.

Некоторые карбоцепные  и гетероцепные полимеры могут иметь  сопряженную систему связей, например:

... сн = сн - сн = сн - сн = сн ...

Энергия сопряженной  связи 100 — 110 ккал/моль выше одинарной, .поэтому такие полимеры более устойчивы при нагреве.

Органическими полимерами являются смолы и каучуки. Элементоорганические соединения содержат в составе, основной цепи неорганические атомы кремния, титана, алюминия и других элементов, которые сочетаются с органическими  радикалами (метальный, фенильный, этильный). Органические радикалы придают материалу прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость. В природе таких соединений не встречается. Представителями этой группы являются кремнийорганические соединения, разработанные советским ученым К.. А. Андриановым. Строение этих соединений в основном имеет вид

R R

I I

• Si—О — Si— •

I I

R R

Между атомами  кремния и кислорода существует прочная химическая связь; энергия  силоксановой связи Si — О равна 89,3 ккал/моль. Отсюда и более высокая теплостойкость кремнийорганических смол, каучуков, хотя их упругость и эластичность меньше, чем у органических. Полимеры, содержащие в основной цепи титан и кислород, называются полититаноксанами.

Представляют собой  композиционные материалы, состоящие  из полимерного связующего и упрочнителей в виде синтетических волокон. Они устойчивы в агрессивных средах и во влажном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая.

Органоволокниты применяют в качестве изоляционного и конструкционного материала в электрорадиопромышленности, авиационной технике, автостроении; из них изготовляют трубы, емкости.

Резиновые материалы

1. Общие сведения, состав  и классификация  резин

Резиной называется продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками.

Резина как технический  материал отличается от других материалов высокими эластическими свойствами, которые присущи каучуку —  главному исходному компоненту резины. Она способна к очень большим  деформациям (относительное удлинение  достигает 1000%), которые почти полностью обратимы. При комнатной температуре резина находится в высокоэластическом состоянии и ее эластические свойства сохраняются в широком диапазоне температур.

Модуль упругости  лежит в пределах 0,1 — 1 кгс/мм2, т. е. он в тысячи и десятки тысяч  раз .меньше, чем для других материалов. Особенностью резины является ее малая сжимаемость (для инженерных расчетов резину считают несжимаемой); коэффициент Пуассона равен 0,4 — 0,5, тогда как для металла эта величина составляет 0,25 — 0,30. Другой особенностью резины как технического материала является релаксационный характер деформации. При комнатной температуре время релаксации может составлять-10 ~ 4 с й более. При работе резины в условиях многократных механических напряжений часть энергии, воспринимаемой изделием, теряется на внутреннее трение (в самом каучуке и между молекулами каучука и частицами добавок); это трение преобразуется в теплоту и является причиной гистерезисных потерь. При эксплуатации толстостенных деталей (например, шин) вследствие низкой теплопроводности материала нарастание температуры в массе резины снижает ее работоспособность.

Кроме отмеченных особенностей для резиновых материалов характерны высокая стойкость к  истиранию, газо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность.

В результате совокупности технических свойств резиновых  материалов их применяют для амортизации  и демпфирования, уплотнения и герметизации в условиях воздушных и жидкостных сред, химической защиты деталей машин, в производстве тары для хранения масел и горючего, различных трубопроводов (шлангов), для покрышек и камер  колес самолетов, автотранспорта и  т. д. Номенклатура резиновых изделий  насчитывает более 40000 наименований.

Состав и классификация  резин. Основой всякой резины служит каучук натуральный (НК) или синтетический (СК), который и определяет основные свойства резинового материала. Для  улучшения физико-механических свойств  каучуков вводятся различные добавки (ингредиенты). Таким образом, резина состоит из каучука и ингредиентов, рассмотренных ниже. 1. Вулканизующие  вещества (агенты) участвуют в образовании  пространственно-сеточной структуры  вулканизата. Обычно в качестве таких веществ применяют серу и селем, для некоторых каучуков перекиси. Для резины электротехнического назначения вместо элементарной серы (которая взаимодействует с медью) применяют органические сернистые соединения — тиурам (тиурамовые резины).

Ускорители процесса вулканизации: полисульфиды, окислы свинца, магния и др. влияют как на режим вулканизации, так и на физико-механические свойства вулканизатов.. Ускорители проявляют свою наибольшую активность в присутствии окислов некоторых металлов (цинка и др.), называемых поэтому в составе резиновой смеси активаторами.

Противостарители (антиоксиданты) замедляют процесс старения резины, который ведет к ухудшению ее эксплуатационных свойств. Существуют противостарители химического и физического действия. Действие первых заключается в том, что они задерживают окисление каучука в результате окисления их самих или за счет разрушения образующихся перекисей каучука (применяются альдольнеозон Д и др.). Физические противостарители (парафин, воск) образуют поверхностные защитные пленки, они применяются реже.

Мягчители (пластификаторы) облегчают переработку резиновой смеси, увеличивают эластические свойства каучука, повышают морозостойкость резины. В качестве мягчителей вводят парафин, вазелин, стеариновую кислоту, битумы, дибутилфталат, растительные масла. Количество мягчителей 8 — 30% от массы каучука.

Наполнители по воздействию  на каучук подразделяют на активные (усиливающие) и неактивные (инертные). Усиливающие наполнители (углеродистая сажа и белая сажа — кремнекислота, окись цинка и др.) повышают механические свойства резин: прочность, сопротивление истиранию, твердость. Неактивные наполнители (мел, тальк, барит) вводятся для удешевления стоимости резины.

Часто в состав резиновой смеси вводят регенерат  — продукт переработки старых резиновых изделий и отходов  резинового производства. Кроме снижения стоимости регенерат повышает качество резины, снижая ее склонность к старению.

5.Красители  минеральные или  органические вводят  для окраски резин.

Некоторые красящие вещества (белые, желтые, зеленые) поглощают  коротковолновую часть солнечного спектра и этим защищают резину от светового старения.

Любой каучук является непредельным высокополимерным соединением  с двойной химической связью между  углеродными атомами в элементарных звеньях макромолекулы. Молекулярная масса каучуков исчисляется в 400000 — 450000. Структура макромолекул линейная или слаборазветвленная и состоит  из отдельных звеньев, которые имеют  тенденцию свернуться в клубок, занять минимальный объем, но этому препятствуют силы межмолекулярного взаимодействия, поэтому молекулы каучука извилистые (зигзагообразные). Такая форма молекул  и является причиной исключительно  высокой эластичности каучука (под  небольшой нагрузкой происходит выпрямление молекул, изменяется их конформация). По свойствам каучуки напоминают термопластичные полимеры. Наличие в молекулах каучука непредельных связей позволяет, при определенных условиях, переводить его в термостабильное состояние. Для этого по месту двойной связи присоединяется двухвалентная сера (или другое вещество), которая образует в поперечном направлении как бы «мостики» между нитевидными молекулами каучука, в результате чего получается пространственно-сетчатая структура, присущая резине (вулканизату). Процесс химического взаимодействия каучука с серой в технике называется вулканизацией

В зависимости  от количества вводимой серы получается различная частота сетки полимера. При введении 1-5% серы образуется редкая сетка, и резина получается высокоэластичной, мягкой. С увеличением процентного содержания серы сетчатая структура становится все более частой, резина более твердой, и при максимально возможном (примерно 30%) насыщении каучука серой образуется твердый материал, называемый эбонитом]

При вулканизации изменяется молекулярная структура  полимера (образуется пространственная сетка), что влечет изменение его  физико-механических свойств: резко  возрастет прочность при растяжении и эластичность каучука, а пластичность почти полностью исчезает (например, натуральный каучук имеет ?в = 0,10 - 0,15 кгс/мм2, после вулканизации ?в = 3,5 кгс/мм2); увеличивается твердость, сопротивление износу. Многие каучуки растворимы в растворителях, резины только набухают в них и более стойки к химикатам. Резины имеют более высокую теплостойкость (НК размягчается при температуре 90°С, резина работает при температуре свыше 100эС).

На изменение  свойств резины оказывает влияние  взаимодействие каучука с кислородом, поэтому при вулканизации одновременно происходят два процесса: структурирование под действием вулканизующего агента и деструкция под влиянием окисления  и температуры. Это особенно характерно для резин из НК. Для синтетических каучуков (СК) процесс вулканизации дополняется полимеризацией: под действием кислорода и температуры образуются межмолекулярные углеродистые связи, упрочняющие термостабильную структуру, что дает повышение прочности.

...
Похожие работы:
© 2009-2018 Все права защищены — dipland.ru