По алфавиту:

Указатель категорий Логика Доказательство и опровержение

Доказательство и опровержение

Тип работы: Контрольная работа
Предмет: Логика
Язык документа: Русский
Год сдачи: 2010
Последнее скачивание: не скачивался

Описание.

Доказательство занимает специфическое место в курсе логики. Оно объединяет все рассмотренные формы мышления. Здесь применяются все законы и правила, обеспечивающие логическую строгость и последовательность мысли. В доказательстве фокусируются все теоретические и практические выводы логики, наиболее значительно выражаются ее познавательные возможности и задачи.

Выдержка из работы.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего  профессионального образования

«Читинский  государственный  университет»

(ЧитГУ)

Институт  переподготовки и  повышения квалификации 

Кафедра факультета гуманитарной культуры 
 
 
 
 
 
 

Контрольная работа

По дисциплине: Логика

Вариант № 9

Тема: Доказательство и опровержение 
 
 
 
 

                   Выполнил: ст.гр. ЮВГ-10-1

                Б.Д.Бадмацыренов

                   Проверил: Н.С.Кондакова  
               
               
               
               
               

Чита 2010

Содержание: 

Введение…………………………………………………………………………...3

  1. Доказательство…………………………………………………………....4
  2. Опровержение……………………………………………………………..10
  3. правила доказательства и опровержения………………………………..12

Заключение……………………………………………………………………….18

Список  использованной литературы…………………………………………...19 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение 

      Познание отдельных предметов, их свойств происходит посредством форм чувственного познания (ощущений и восприятий). Мы видим, что этот дом еще не достроен, ощущаем вкус горького лекарства. Эти истины не подлежат особому доказательству, они очевидны.

      Во  многих случаях, например  в научной работе в судебных заседаниях, на защите диссертации приходится доказывать, обосновывать высказанные суждения.

      Доказательство  занимает специфическое место в  курсе логики. Оно объединяет все  рассмотренные формы мышления. Здесь  применяются все законы и правила, обеспечивающие логическую строгость и последовательность мысли. В доказательстве фокусируются все теоретические и практические выводы логики, наиболее значительно выражаются ее познавательные возможности и задачи. 
 
 
 
 
 
 
 
 
 

  1. Понятие доказательства
 

      Доказательство - это выведение одного знания из другого, истинность которого ранее  установлена и проверена человеческой практикой. Вот почему оно, в конечном счете, является сверкой теоретических положении и выводов с реальной действительностью. Использование научных открытий в практической деятельности трудно представить без подобной сверки. Логически стройное и убедительное доказательство необходимо как в естественных, так и в гуманитарных науках. Следует подчеркнуть, что термин “доказательство” употребляется в нескольких значениях.

      Во-первых, под доказательством понимают факты, при помощи которых обосновывается истинность того или иного положения.

      Во-вторых, доказательство обозначает источники сведений о фактах: летописи, рассказы очевидцев, мемуары, документы и т.п. Например, аттестат зрелости П. – доказательство имеющегося у него среднего образования.

      В-третьих, "доказательство" – это процесс мышления, в котором обосновывается истина какого-либо суждения (положения). В логике термин "доказательство" употребляется именно в этом значении.

      Доказательство  образует довольно расплывчатую совокупность, которую невозможно охватить одним  универсальным определением. В логике принято говорить не о доказуемости вообще, а о доказуемости в рамках данной конкретной системы или теории. При этом допускается существование разных трактовок понятия "доказательство", относящихся к разным системам. Это необходимо иметь в виду при рассмотрении доказательства в рамках традиционной логики.

      Итак, доказательство - это логическое рассуждение, в процессе которого подтверждается истинность какой-либо мысли с помощью других положений, проверенных теорией и практикой. Путем доказательства совершается переход от вероятного, недостоверного знания к достоверному. Его назначение - служить сверкой теоретических положений и выводов с реальной действительностью.

    Структура доказательства:

    1. тезис – это суждение, истинность которого надо доказать.
    2. аргументы – это те истинные суждения, которыми пользуются при доказательстве тезиса.
    3. демонстрация – форма доказательства, способ логической связи между тезисом и аргументами.
 

      Тезисом доказательства называется то положение, истинность которого требуется доказать. Если нет тезиса, то и доказывать нечего. Поэтому все доказательное рассуждение целиком подчинено тезису и служит для его подтверждения (или опровержения). Известный русский логик С.И. Поварнин сравнивал роль тезиса в доказательстве со значением фигуры "короля" в шахматной игре. Этой фигуре подчинен весь процесс игры, с ее "интересами" сообразуется каждое движение других шахматных фигур. Аналогично и в доказательстве: главная цель всех рассуждений – подтверждение или опровержение тезиса.

      Аргументами (или основаниями) доказательства называются те суждения, которые приводятся для доказательства тезиса. Доказать тезис, значит, привести такие суждения, которые были бы достаточными для обоснования истинности или ложности выдвинутого тезиса. Основными видами аргументов являются: факты, законы, аксиомы, определения и иные, ранее доказанные положения.

      Факт - это явление или событие, имевшее место в действительности. Факты являются очень важным видом аргумента. Они обладают достоверностью и большой силой убедительности и поэтому широко используются в доказательствах. Поскольку факты отражают действительность, то отрицать их в то время, когда они существуют, или ссылаться на факты, которых нет, значит, не считаться с действительностью. Факты настолько же авторитетны, насколько авторитетна сама действительность.

      Законы  науки - это истины особого порядка, которые отличаются от других знаний, как своим содержанием, так и формой их открытия. Законы науки являются отражением законов объективного мира и выражают внутренние, существенные, устойчивые, повторяющиеся, необходимые связи между явлениями и процессами. Но всякий закон имеет границы своего действия. Законы действуют в определенных условиях, с изменением которых может появиться другой закон. Поэтому при обосновании какого-либо положения при помощи закона надо знать, можно ли доказываемый тезис обосновать именно данным законом.

      Аксиома - это положение, не требующее доказательства. Истинность аксиом, лежащих в основе доказательства, не удовлетворяется в каждом отдельном случае потому, что проверка этой истинности многократно производилась ранее, подтверждена практикой человека. Аксиомы довольно широко используются в качестве оснований в математике, механике, теоретической физике и других областях естествознания. В гуманитарных же науках аксиомы как основания доказательства почти не применяются. Объясняется это тем, что общественная жизнь, изучаемая данными науками, представляет собой сложную форму движения материи, вариативность которой усиливается сознательным воздействием на нее человека.

      Демонстрацией (или формой доказательства) называется способ логической связи тезиса с аргументами. Тезис и аргументы доказательства являются по своей логической форме суждениями. Выраженные в грамматических предложениях, они воспринимаются нами непосредственно: тезис и аргументы можно увидеть, если они написаны; услышать, если они произнесены.

Однако  тезис и аргументы сами по себе, вне логической связи друг с другом, еще не составляют доказательства. Аргументы начинают приобретать  определенное значение лишь тогда, когда мы выводим из них тезис. Процесс выведения тезиса из аргументов и есть демонстрация. Она всегда выражается в форме умозаключения. Это может быть отдельное умозаключение, но чаще - цепочка рассуждений. Особенность умозаключений, в форме которых протекает демонстрация, состоит в том, что суждение, нуждающееся в обосновании и выступающее тезисом доказательства, является заключением вывода и формулируется заранее; суждение же об аргументах, которые служат посылками вывода, остаются неизвестными и подлежат восстановлению.

       Способы доказательства: прямые и непрямые (косвенные).

       Прямое  доказательство идет от рассмотрения аргументов к доказательству тезиса, т.е. истинность доказательства непосредственно  обосновывается аргументами. Прямыми доказательствами являются такие фактические данные, которые содержат информацию об обстоятельствах, входящих в предмет доказывания, это событие преступления, факт совершения его определенным лицом, виновность этого лица в виде умысла или неосторожность. По этому типу проводятся доказательства в судебной практике, в науке, в полемике, в сочинениях школьников, при изложении материала учителем. Широко используется прямое доказательство в статистических отчетах, в различных документах, в постановлениях.

       На  уроке обществоведения при прямом доказательстве тезиса “Народ - творец истории” учитель показывает, во-первых, что народ является создателем материальных благ, во-вторых, обосновывает огромную роль народных масс в политике, разъясняет, как в современную эпоху народ ведёт активную борьбу за мир, в-третьих, раскрывает его роль в создании духовной культуры.

       Важнейшая отличительная особенность прямых доказательств состоит в том, что в их содержание входят сами обстоятельства, подлежащие доказыванию, в виде непосредственной информации о них. Обвиняемый рассказывает о  том, как он готовил и совершал преступление, свидетель — очевидец преступления дает показания о действиях обвиняемого и потерпевшего в момент преступления и т. д. Во всех таких случаях мы имеем дело с прямыми доказательствами, когда фактические данные, сообщаемые теми или иными лицами, прямо и непосредственно указывают на одно или несколько обстоятельств, подлежащих доказыванию по делу в конечном счете, входящих в главный факт.

       Косвенное доказательство, его разновидности.

       Непрямое (косвенное) доказательство - это доказательство, в котором истинность выдвинутого тезиса обосновывается путём доказательства ложности антитезиса. В косвенных доказательствах нет сведений о событии преступления, вине, обстоятельствах, характеризующих личность обвиняемого, характере и размере ущерба. Находящаяся в них информация, имеющая отношение к делу, лишь помогает установить обстоятельства, подлежащие доказыванию. Оно применяется тогда, когда нет аргументов для прямого доказательства.

       Косвенные доказательства содержат сведения о  фактах, которые предшествовали, сопутствовали или следовали за устанавливаемым событием и по совокупности которых можно сделать вывод о том, имело ли место событие преступления, виновен или не виновен обвиняемый. Так, при расследовании дела об убийстве на основании косвенных доказательств (принадлежность обвиняемому ножа, которым совершено убийство, обнаружение на месте совершения преступления следов обуви обвиняемого, установление неприязненных отношений обвиняемого и потерпевшего и других фактических данных) формируется вывод следователя, суда о совершении обвиняемым данного преступления. Путь установления обстоятельств дела с помощью косвенных доказательств более сложный, чем при прямых доказательствах. Косвенные доказательства в своей совокупности могут служить основанием для вывода о фактах, входящих в предмет доказывания. Они могут быть использованы при проверке достоверности прямых доказательств, восполнять их пробелы, указывать путь получения новых доказательств. Косвенные доказательства нельзя считать доказательствами «второго сорта». Эти доказательства чаще, чем прямые, встречаются при расследовании и рассмотрении уголовных дел и при правильном их использовании приводят к достоверным выводам. 

      В зависимости от этого различия в  структуре антитезиса косвенные  доказательства делятся на два вида:

    – доказательство от “противного” (апагогическое)

    – разделительное доказательство (методом исключения). 

      Доказательство  от “противного” осуществляется путем  установления ложности противоречащего  тезису суждения. Этот метод часто используется в математике.

      Разделительное  доказательство – антитезис является одним из членов разделительного  суждения, в котором должны быть обязательно перечислены все  возможные альтернативы, например:

      Преступление  совершил либо А, либо Б, либо С. Доказано, что не совершали преступление ни А, ни Б. Следовательно, преступление совершил С. Истинность тезиса устанавливается путем последовательного доказательства ложности всех членов разделительного суждения, кроме одного. 
 
 
 
 
 
 
 
 
 

  1. Опровержение
 

      Опровержение – логическая операция, направленная на разрушение доказательства путем установления ложности или необоснованности ранее выдвинутого тезиса.

      Опровержение  должно показать, что: 1) неправильно построено само доказательство (аргументы или демонстрация); 2) выдвинутый тезис ложен или не доказан.

      Суждение, которое надо опровергнуть, называется тезисом опровержения.

      Суждения, с помощью которых опровергается  тезис, называются аргументами опровержения.

      Существует  три способа опровержения тезиса:

      1. опровержение (прямое и косвенное);
      2. критика аргументов;
      3. выявление несостоятельности демонстрации;
 
  1.  опровержение тезиса (прямое и косвенное):
    • опровержение фактами – должны быть приведены действительные события, явления, результаты, научные данные, которые противоречат тезису. Например, чтобы опровергну тезис “На Венере возможна органическая жизнь”, достаточно привести такие данные: температура на поверхности Венеры 470-480° С, а давление - 95-97 атмосфер. Эти данные свидетельствуют о том, что жизнь на Венере невозможна.
    • Установление ложности (или противоречивости) следствий, вытекающих из тезиса – доказывается, что из данного тезиса вытекают следствия, противоречащие истине – “сведение к абсурду”. Поступают так: опровергаемый тезис временно признается истинным, но затем из него выводятся такие следствия, которые противоречат истине.
    • Опровержение тезиса через доказательство антитезиса – по отношению к опровергаемому тезису (А) выдвигается противоречащее ему суждение (неА). И суждение неА доказывается, если антитезис истинен, то тезис ложен, третьего не дано. Например, надо опровергнуть широко распространенный тезис: “Все собаки лают” (суждение А, общеутвердительное). Для суждения А противоречащим будет суждение О - частноотрицательное: “Некоторые собаки не лают”. Для доказательства последнего достаточно привести несколько примеров или хотя бы один пример: “Собаки у пигмеев никогда не лают”'. Итак, доказано суждение О. В силу закона исключенного третьего, если О -истинно, то А - ложно. Следовательно, тезис опровергнут.
  2. критика аргументов. Подвергаются критике аргументы, которые были выдвинуты оппонентом в обоснование его тезиса. Доказывается ложность или несостоятельность этих аргументов.
  3. выявление несостоятельности демонстрации. Этот способ опровержения показывает отсутствие логической связи между аргументом и тезисом. Наиболее распространенной ошибкой является та, что истинность опровергаемого тезиса не вытекает, не следует из аргументов, приведенных в подтверждение тезиса. Доказательство может быть неправильно построенным, если нарушено какое-либо правило дедуктивного умозаключения или сделано “поспешное обобщение”, т. е. неправильное умозаключение от истинности суждения I к истинности суждения А (аналогично, от истинности суждения О к истинности суждения Е). Но обнаружив ошибки в ходе демонстрации, мы опровергаем ее ход, но не опровергаем сам тезис. Задача же доказательства истинности тезиса лежит на том, кто его выдвинул.
Похожие работы:
© 2009-2020 Все права защищены — dipland.ru