По алфавиту:

Указатель категорий Военная подготовка Свинцово-кислотные аккумуляторы

Свинцово-кислотные аккумуляторы

Тип работы: Реферат
Предмет: Военная подготовка
Язык документа: Русский
Год сдачи: 2008
Последнее скачивание: не скачивался

Описание.

Доклад на 15 страниц о применяемых видах батарей

Выдержка из работы.

   Особенности конструкции свинцово-кислотных  батарей

История создания    Первый  работоспособный свинцово-кислотный  аккумулятор был изобретен в 1859 г. французским ученым Гастоном Планте. Его конструкция представляла собой электроды из листового свинца, разделенные сепараторами из полотна, которые были свернуты в спираль и помещены в сосуд с 10 % раствором серной кислоты.

   Недостатком первых свинцово-кислотных аккумуляторов  была их низкая емкость. Первоначально  для ее увеличения проводили большое  число циклов заряда-разряда. Для  достижения существенных результатов требовалось до двух лет таких тренировок. Причина недостатка была явной - конструкция пластин. Поэтому дальнейшее совершенствование конструкции свинцово-кислотных аккумуляторов было направлено на совершенствование конструкции используемых в них пластин и сепараторов.

   В 1880 г. К. Фор предложил технологию изготовления намазных электродов путем нанесения на пластины окислов свинца. Такая конструкция электродов позволила значительно увеличить емкость аккумуляторов. А в 1881 г. Э. Фолькмар предложил использовать в качестве электродов намазную решетку. В том же году ученому Селлону был выдан патент на технологию изготовления решеток из сплава свинца и сурьмы.

   Первоначально практическое применение свинцово-кислотных  аккумуляторов было затруднено из-за отсутствия зарядных устройств - для заряда использовали первичные элементы конструкции Бунзена. То есть химический источник тока заряжался от другого химического источника - батареи гальванических элементов. Положение кардинально изменилось с появлением недорогих генераторов постоянного тока.

   Именно  свинцово-кислотные батареи первыми  в мире из аккумуляторных батарей нашли коммерческое применение. К 1890 году во многих промышленно развитых странах был освоен их серийный выпуск. В 1900 году немецкая фирма Varta выпустила первые стартерные аккумуляторы для автомобилей.

В 70-х  годах прошлого, XX века были созданы  необслуживаемые свинцово-кислотные батареи, способные работать в любом положении. Жидкий электролит в них заменили гелевым или абсорбированным (впитанным) сепараторами электролитом, батареи герметизировали, а для отвода газов, выделяющихся при заряде или разряде, установили безопасные клапаны. Были разработаны новые конструкции пластин на основе медно-кальциевых сплавов, покрытых оксидом свинца, на основе титановых, алюминиевых и медных решеток.

Определение свинцово-кислотных аккумуляторов и их классификация.    Активные  вещества аккумулятора сосредоточены  в электролите и положительных  и отрицательных электродах, а  совокупность этих веществ называется электрохимической системой. В свинцово-кислотных аккумуляторных батареях электролитом является раствор серной кислоты, активным веществом положительных пластин - двуокись свинца РbО2, отрицательных платин - свинец Рb.

   Принцип работы свинцово-кислотных аккумуляторов  основан на электрохимических реакциях свинца и диоксида свинца в сернокислотной среде. Во время разряда происходит восстановление диоксида свинца на катоде и окисление свинца на аноде. При заряде протекают обратные реакции, к которым в конце заряда добавляется реакция электролиза воды, сопровождающаяся выделением кислорода на положительном электроде и водорода — на отрицательном.

   Химическая  реакция:

   Анод:

   Катод:

   Элемент свинцово-кислого аккумулятора состоит  из положительных и отрицательных электродов, сепараторов (разделительных решеток) и электролита. Положительные электроды представляют собой свинцовую решётку, а активным веществом является окись свинца (PbO2). Отрицательные электроды также представляют собой свинцовую решётку, а активным веществом является губчатый свинец (Pb). На практике в свинец решёток добавляют сурьму в количестве 1-2 % для повышения прочности. Электроды погружены в электролит, состоящий из разбавленной серной кислоты (H2SO4). Наибольшая проводимость этого раствора при комнатной температуре (что означает наименьшее внутреннее сопротивление и наименьшие внутренние потери) достигается при его плотности 1,26 г/см3. Однако на практике, часто в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29 -1,31 г/см3. (Это делается потому, что при разряде свинцово-кислотного аккумулятора плотность электролита падает, и температура его замерзания, т.о, становится выше, разряженный аккумулятор может не выдержать холода.)

   В новых версиях свинцовые пластины (решетки) заменяют вспененным карбоном, покрытым тонкой свинцовой пленкой , а жидкий электролит может быть желирован силикагелем до пастообразного состояния.

  • Удельная энергоемкость (Вт·ч/кг): около 30-40 Вт·ч/кг.
  • Удельная энергоплотность (Вт·ч/дм?): около 60-75 Вт·ч/дм?.
  • ЭДС: 2,1 В.
  • Рабочая температура: от минус 40 до плюс 40
 

   Для того чтобы было легче разобраться  в многообразии, свинцово-кислотных аккумуляторных батарей, следует знать об их делении на группы по режиму их эксплуатации и по технологии изготовления. Это поможет понять, как правильно подобрать аккумуляторную батарею для решения конкретных задач, как правильно выбрать режимы заряда и разряда, какие внешние факторы и как будут влиять на ее работу в процессе эксплуатации.

   По  режиму эксплуатации аккумуляторные батареи  делятся на три группы:

   1. Батареи для работы в буферном  режиме, когда батарея работает в буфере с основным источником напряжения, например, сетевым блоком питания. При этом основное ее назначение - резервный источник питания. Периоды разряда батареи по сравнению с периодами заряда непродолжительны. Большую часть времени она постоянно подзаряжается. В буферном режиме работают батареи резервного питания базовых станций мобильной связи, АТС, сетевые коммутаторы провайдеров Интернет, источники бесперебойного питания персональных компьютеров и серверов (UPS) и т. д.

   2. Батареи для работы в циклическом  режиме, который характерен их  разрядом в течение какого-то  времени и последующим зарядом.  Циклический режим работы аккумуляторных батарей используется гораздо реже, чем буферный. Примером такого режима можно назвать работу электротранспорта и устройств с автономным питанием: в течение рабочего дня происходит разряд тяговых батарей или батарей питания, а после его окончания эти батареи ставят на заряд.

   3. Батареи для работы в смешанном  режиме, например автомобильные батареи.

   По  конструкции свинцово-кислотные  аккумуляторные батареи можно разделить  на батареи с жидким электролитом - обслуживаемые и необслуживаемые - и батареи с регулируемыми клапанами (VRLA - Valve Regulated Lead Acid batteries) - с увлажненными сепараторами и с гелевым электролитом.

   В различной технической литературе можно встретить такие названия батарей, как SLA - Sealed Lead Acid batteries - герметичные свинцово-кислотные батареи, относящиеся к VRLA батареям. Хотя это не вполне соответствует истине: абсолютно герметичных батарей не существует по той причине, что во всех них используются клапаны для снижения внутрикорпусного давления. Очень часто, подчеркивая это, вместо термина "герметичные батареи" употребляют термин "герметизированные батареи". Встречается также название Gelcell - торговая марка гелевых батарей. Стартерные батареи иногда сокращенно называют SLI, что расшифровывается как Start, Light, Ignition - пуск, освещение, зажигание.

   Свинцово-кислотные  аккумуляторные батареи до сих пор  остаются самыми надежными, долговечными и не требующими высоких эксплуатационных затрат химическими источниками тока. В настоящее время производятся и активно эксплуатируются аккумуляторные батареи трех поколений:

   1. Батареи первого поколения - батареи  с жидким электролитом открытого или закрытого типа, имеющие емкость от 36 до 5328 Ач и срок службы от 10 до 20 и более лет. Батареи открытого типа не имеют крышек, и электролит непосредственно соприкасается с открытым воздухом. Основные затраты при их эксплуатации - это затраты на обслуживание, связанные с необходимостью частой доливки дистиллированной воды, и расходы на содержание хорошо вентилируемых помещений, в которых их устанавливают. Батареи закрытого типа имеют специальные пробки, обеспечивающие задержку аэрозоли серной кислоты. Пробки для заливки электролита и добавления воды при эксплуатации вывинчиваются. Батареи закрытого типа могут быть и необслуживаемыми: от производителя они поставляются залитыми и заряженными, и в течение срока службы нет необходимости доливки воды, т. к. конструкция пробок таких батарей обеспечивает удержание ее паров в виде конденсата. Кроме использования в качестве стационарных, батареи закрытого типа являются основным типом батарей, используемых в автотракторной технике в качестве стартерных и тяговых.

   2. Батареи второго поколения, которыми  являются герметизированные гелевые батареи. В них вместо жидкого электролита используется гелеобразный, представляющий собой желе, полученное в результате смешивания раствора серной кислоты с загустителем (обычно это двуокись кремния SiO2 - силикагель). Технология производства гелевых батарей получила название GEL. Гелевые батареи в течение всего срока эксплуатации не нуждаются в обслуживании, их нельзя вскрывать. Для их подзаряда необходимо использовать зарядные устройства, обеспечивающие нестабильность напряжения заряда не хуже ±1 % для предотвращения обильного газовыделения. Такие аккумуляторные батареи критичны к температуре окружающей среды.

   3. Батареи третьего поколения - это герметизированные батареи  с абсорбированным сепараторами  электролитом. Часто их называют  батареями, собранными по AGM-технологии. AGM - Absorbed in Glass Mat, т. е. технология, при которой электролит абсорбирован в сепараторах из стекловолокна, размещенных между электродами. Такой сепаратор представляет собой пористую систему, в которой капиллярные силы удерживают электролит. При этом количество электролита дозируется так, чтобы мелкие поры были заполнены, а крупные оставались свободными для свободной циркуляции выделяющихся газов. По своим свойствам AGM батареи подобны гелевым, за исключением того, что газообразование в них существенно меньше, и меньшее влияние на их работу оказывает температура окружающей среды. Как и для гелевых аккумуляторных батарей, для них требуются зарядные устройства, обеспечивающие нестабильность напряжения заряда не хуже ±1 %.

   К сожалению, в России герметизированные  свинцово-кислотные аккумуляторы не производятся.

   Конструкция батарей различных фирм, их выпускающих, может иметь свои особенности, например, особую конструкцию сепараторов или решеток или применение специфических добавок при изготовлении пластин. Часто при обозначении типа аккумуляторной батареи указывают ее маркировку, которая определяется конструкцией положительных пластин.

   При изготовлении свинцово-кислотных аккумуляторных батарей применяют химические добавки. Например, к свинцу добавляют сурьму (доля в сплаве 1...10 %), которая обеспечивает более прочный электрический контакт активного материала с решеткой, предотвращает его осыпание, что позволяет увеличить срок службы аккумуляторных батарей. Кроме свинцово-сурьмяных, используют также свинцово-кальциевые сплавы, позволяющие сделать пластины более легкими и прочными при сохранении высоких электрических и механических характеристик.

   Правильный  подбор металлов, химикатов и добавок  помогает достичь компромисса и баланса между высокой энергетической плотностью, длительностью срока хранения, увеличением срока службы и безопасностью при эксплуатации. Высокой энергетической плотности можно достичь сравнительно легко, например, добавив вместо кобальта никель. Емкость батареи при этом возрастет, снизится ее стоимость, но при этом ухудшится и безопасность ее эксплуатации. Начинающие свой бизнес компании могут во главу угла поставить максимально возможную емкость выпускаемых батарей, пренебрегая всем остальным. Но производители с высокой репутацией на рынке, такие, как EXIDE, FIAMM, HOPPECKE, Panasonic, Varta и другие, на первое место всегда ставят безопасность своей продукции и продают только безопасные и надежные аккумуляторные батареи.

   Большинство типов свинцово-кислотных аккумуляторных батарей имеют элементы призматической формы. Поэтому прямоугольные корпуса для них изготавливаются из пластмасс. Хотя некоторые типы батарей VRLA производятся на основе цилиндрических элементов, сохраняя все преимущества последних. Они обеспечивают более высокую стабильность работы элементов, больший ток разряда, лучшую температурную стабильность по сравнению с батареями, собранными из призматических элементов.

   Герметичные свинцово-кислотные аккумуляторы (SLA)

   Свинцово-кислотный  аккумулятор, изобретеный французским  врачом Gaston Plantй в 1859, был первым заряжаемым аккумулятором для коммерческого использования. Сегодня заливаемые свинцово-кислотные аккумуляторы используются в автомобилях и оборудовании, требующих отдачи большой мощности. В более портативном приборах используются герметичные аккумуляторы или аккумуляторы с клапаном давления, некоторые из которых продаются под торговой маркой "gelcell".

   В отличие от обычного (негерметичного, примеч. Переводчика) свинцово-кислотного аккумулятора, SLA аккумулятор разработан с низким потенциалом перезаряда для предохранения аккумулятора от достижения потенциала, при котором во время заряда происходит выделение газа и начинается водное истощение. Поэтому SLA аккумулятор имеет длительный срок хранения, но никогда не заряжается до своего полного потенциала. Среди заряжаемых аккумуляторов, SLA имеет самую низкую плотность энергии.

   SLA аккумуляторы обычно используется  в случаях, когда требуется большая мощность, вес не критичен, а стоимость должна быть низкой. Диапазон значений емкости для портативных приборов лежит в диапазоне от 1 до 30 A*час, а область применения - инвалидные кресла, блоки бесперебойного питания и резервное освещение. SLA аккумуляторами также комплектуются некоторые переносные сотовые телефоны и видеокамеры. Из-за низкого саморазряда и минимальных требований по обслуживанию, SLA аккумуляторы – наиболее предпочтительный выбор для медицинских инструментов. Большие SLA аккумуляторы для стационарных применений имеют емкость от 50 до 200 A*час.

   SLA аккумуляторы не подвержены эффекту  памяти. Без всякого вреда допускается  оставлять аккумулятор в зарядном  устройстве на плавающем заряде в течение длительного времени. Сохранение заряда - лучшее среди заряжаемых аккумуляторов. Принимая во внимание, что NiCd аккумуляторы саморазряжаются за три месяца на 40 % от запасенной энергии, SLA аккумуляторы саморазряжаются на то же самое количество за один год. Эти аккумуляторы недороги, но стоимость их эксплуатации может быть выше, чем у NiCd, если в течение срока эксплуатации требуется большое количество циклов разряда / заряда.

   Для SLA аккумуляторов не приемлем режим  быстрого заряда. Типовое время заряда - от 8 до 16 часов. SLA аккумулятор должен всегда храниться в заряженном состоянии. Хранение его в разряженном состоянии вызывает сульфатацию, которая делает их заряд трудным, если не невозможным (Заряд SLA Аккумулятора).

   В отличие от NiCd, SLA аккумуляторы не любят  глубокие циклы разряда. Глубокий разряд вызывает дополнительное напряжение, подобное напряжению механического устройства. Фактически, каждый цикл разряда / заряда отнимает у аккумулятора небольшое количество емкости. Эта потеря очень небольшая, если аккумулятор находится в хорошем состоянии, но становится более ощутима, как только емкость понижается ниже 80 % от номинальной. Это справедливо и для аккумуляторов других электрохимических систем, но в различной степени. Чтобы ослабить влияние глубокого разряда, можно использовать SLA аккумулятор немного большего размера.

   В зависимости от глубины разряда  и температуры эксплуатации, SLA аккумулятор  обеспечивает от 200 до 500 циклов разряда / заряда. Основная причина относительно небольшого количества циклов разряда / заряда - расширение положительных пластин, которое является результатом химической реакции внутри аккумулятора. Это явление наиболее сильно проявляется при более высоких температурах. Применение циклов заряда / разряда не устраняет этот процесс. Однако, имеются методы улучшения состояние SLA аккумуляторов. 

   SLA аккумуляторы обладают относительно  низкой плотностью энергии по  сравнению с другими аккумуляторами, и вследствие этого непригодны для компактных устройств. Это становится особенно критичным при низких температурах, так как способность отдавать большой ток в нагрузку при низких температурах значительно уменьшеньшается. Как это ни парадоксально, SLA аккумулятор весьма хорошо заряжается с чередующимися импульсами разряда. В течение этих импульсов, ток разряда может достигать значения более, чем 1C.

Из-за высокого содержания свинца, SLA аккумуляторы при  неправильной утилизации экологически вредны, но в меньшей степени, чем NiCd.

Сравнение с др. носителями энергии    Напряжение  на элементе свинцово-кислотной батареи  составляет 2,2 В. Среди всех типов  аккумуляторов свинцово-кислотные  отличаются наименьшей энергетической плотностью. В них отсутствует "эффект памяти". Их продолжительный заряд не станет причиной выхода батареи из строя.

   Способность сохранять заряд у этих батарей  наилучшая из всех типов аккумуляторных батарей. Если никель-кадмиевые батареи в течение трех месяцев теряют 40 % сохраненной энергии, то свинцово-кислотные батареи теряют 40 % энергии только за год. Они недороги, но эксплуатационные расходы на них выше, чем на те же никель-кадмиевые батареи.

   Время заряда свинцово-кислотных батарей  составляет 8... 16 часов. Они всегда должны храниться в заряженном состоянии, так как хранение в незаряженном состоянии приведет к сульфатации пластин - причине потери емкости, а в перспективе и к тому, что батарею впоследствии зарядить не удастся вообще.

   В отличие от никель-кадмиевых свинцово-кислотные  батареи не любят глубоких циклов заряд/разряд. Полный разряд может стать  причиной деформации пластин, и каждый цикл заряда/разряда батареи впоследствии ведет к снижению ее емкости. Такие потери относительно невелики, пока батарея работает в нормальных условиях, но даже единственный случай ее перегрузки и, как результат, глубокого разряда приведет к потере ее емкости примерно на 80 %. Для предупреждения таких случаев рекомендуется использовать батареи повышенной емкости.

   В зависимости от глубины разряда  и рабочей температуры ресурс или срок службы свинцово-кислотной  батареи может составлять от 1 года до 20 и более лет. Кроме того, в значительной мере срок службы определяется конструкцией элементов батареи.

   Существует  несколько способов увеличения емкости  и срока службы свинцово-кислотных батарей. Оптимальная рабочая температура для таких батарей составляет 25 °С, и ее увеличение на каждые 10 °С сокращает срок службы батареи наполовину. Например, VRLA батарея при температуре 25 °С может работать 10 лет, а при температуре 33 °С - только 5 лет, ну а при температуре 42 °С - всего лишь 1 год.

Преимущества  свинцово-кислотных батарей    Преимущества  свинцово-кислотных батарей:

   • дешевизна и простота производства - по стоимости 1 Вт * ч энергии эти батареи являются самыми дешевыми;

   • отработанная, надежная и хорошо понятная технология обслуживания;

   • малый саморазряд - самый низкий по сравнению с аккумуляторными батареями других типов;

   • низкие требования по обслуживанию - отсутствует "эффект памяти", не требуется доливки электролита;

   • допустимы высокие токи разряда. Недостатки свинцово-кислотных батарей:

   • не допускается хранение в разряженном  состоянии;

   • низкая энергетическая плотность - большой  вес аккумуляторных батарей ограничивает их применение в стационарных и подвижных  объектах;

   • допустимо лишь ограниченное количество циклов полного разряда;

   • кислотный электролит и свинец оказывают  вредное воздействие на окружающую среду;

• при  неправильном заряде возможен перегрев. Свинцово-кислотные батареи имеют настолько низкую энергетическую плотность по сравнению с другими типами батарей, что это делает нецелесообразным использование их в качестве источников питания переносных устройств. Хотя примеры их применения в портативной электронной технике есть. Кроме того, при низких температурах их емкость существенно снижается.

Методы  заряда аккумуляторных батарей

   Заряд свинцово-кислотных  аккумуляторных батарей

   Алгоритм  заряда свинцово-кислотных батарей  отличается от алгоритма заряда никель-кадмиевых батарей - более критичным является ограничение напряжения, чем ограничение тока заряда. Время заряда герметичных свинцово-кислотных батарей составляет 12... 16 ч. Если увеличить ток и применить методы многоступенчатого заряда, его можно сократить до 10 ч и менее. Зарядить герметичные свинцово-кислотные батареи так же быстро, как никель-кадмиевые, нельзя.

   Вообще, свинцово-кислотные батареи, как  и никель-кадмиевые, по назначению можно  разделить на две большие группы:

   1. Батареи, используемые как основной  источник питания, для которых характерны повторяющиеся циклы заряд/разряд, т. е. батареи циклического применения.

   2. Батареи, используемые в резервных  источниках питания, например в ИБП, и работающие в буферном режиме.

   Соответственно  этому делению различаются и  возможные методы их заряда: для  первой группы применяются методы заряда при постоянном напряжении заряда и при постоянных значениях напряжения и тока заряда, а для второй - метод двухступенчатого заряда при постоянном напряжении заряда и метод компенсирующего заряда (струйной подзарядки).  

   Метод заряда при постоянном напряжении заряда

   Метод заряда при постоянном напряжении заряда является основным методом для батарей, работающих в циклическом режиме. При таком методе к выводам батареи прикладывается постоянное напряжение из расчета 2,45 В на элемент при температуре воздуха 20...25 °С. Величина этого напряжения может для различных типов батарей от разных производителей незначительно отличаться. В технической документации на аккумуляторные батареи четко указывают значение напряжения заряда и информацию по его поправкам для тех случаев, когда температура окружающей среды отличается от нормальной (25 °С).

   Заряд считается завершенным, если ток  заряда остается неизменным в течение трех часов. Если не осуществлять контроль над постоянством напряжения на батарее, может наступить ее перезаряд. В результате электролиза, из-за того, что негативные пластины перестают активно поглощать кислород, вода электролита начинает разлагаться на кислород и водород, испаряясь из батареи. Уровень электролита в батарее снижается, что приводит к ухудшению протекания в ней химических реакций, и ее емкость будет уменьшаться, а срок службы - сокращаться. Поэтому заряд таким методом должен протекать при обязательном контроле напряжения и времени заряда, что позволит увеличить срок службы батареи.

   На  этот метод заряда следует обратить внимание, как на самый простой. Ранее в отечественной литературе при заряде негерметичных свинцово-кислотных батарей считалось нормой производить их заряд начальным током, равным 0,1С в течение 8... 12 часов при напряжении заряда из расчета 2,4 В на элемент батареи.

   При заряде при постоянном напряжении, зарядное устройство должно иметь таймер для отключения батареи по окончании  заряда или другое устройство, обеспечивающее контроль времени или степени  заряда батареи и выдающее сигнал отключения управляющему устройству. Это позволит избежать как ее недостаточного заряда, так и перезаряда. Следует помнить, что

   прерывание  заряда сокращает срок службы аккумуляторной батареи.

   Нельзя  заряжать полностью заряженную батарею - перезаряд может привести к ее порче. При цикличной эксплуатации батареи время заряда не должно превышать 24 часов.

   Метод заряда при постоянных значениях напряжения и тока заряда

   Используя метод заряда при постоянном напряжении и токе заряда, сначала выставляют ток заряда, равный 0,4С, а затем контролируют величину напряжения, которое к концу заряда при комнатной температуре 20...25 °С должно составлять 2,45 В на элемент. Время заряда составляет 6... 12 часов в зависимости от степени разряда батареи.

   Метод двухступенчатого заряда при постоянном напряжении заряда

   Метод двухступенчатого заряда при постоянном напряжении заряда, как и следует из его названия, происходит в два этапа: сначала заряд при более высоком напряжении заряда, а затем заряд при более низком напряжении заряда (струйный или компенсирующий заряд). В структурную схема зарядного устройства, работающего по этому методу, входят источник питания, два ключа напряжения: повышенного SW1 и пониженного - SW2, а также цепь контроля тока заряда, обеспечивающая управление работой зарядного устройства.

   Заряд начинается с подачи на батарею повышенного  напряжения заряда через ключ SW1. При  этом ток начала заряда выбирают, как  правило, равным 0,15С, а время первого этапа заряда - 10 ч. По мере заряда батареи ток заряда уменьшается, и, когда его значение достигнет определенной величины, произойдет выключение ключа SW1 и включение ключа SW2. Зарядное устройство перейдет в режим струйной подзарядки малым током (обычно 0,05С).

   При двухступенчатом заряде начальный  ток первого этапа не должен превышать значения 0,4С, а ток струйной подзарядки - 0,15С

   Как было сказано выше, такой метод  заряда используется в системах резервного питания: в источниках бесперебойного питания компьютеров и аппаратуры связи, в системах аварийного освещения и т. д. Его важным преимуществом является сокращенное время заряда батареи при переходе из рабочего режима в дежурный, до состояния струйной (компенсационной) подзарядки при малой величине тока заряда.

   Данный  метод нельзя применять, если батарея  работает в буфере с нагрузкой (т. е. если нагрузка соединена с ней  параллельно).

   Метод компенсирующего  заряда

   Метод компенсирующего заряда, который  называют также методом струйной подзарядки, обычно применяют на заключительной стадии процесса заряда. Однако применяют его и как самостоятельный метод заряда при заряде свинцово-кислотных аккумуляторных батарей, работающих в дежурном режиме. В источнике бесперебойного питания аккумуляторная батарея играет роль вторичного - резервного источника питания и большую часть времени работает в дежурном режиме.

   В таком источнике в случае сбоя основного источника в работу вступает аккумуляторная батарея. Если ее разряд был непродолжительным, и емкость снизилась незначительно, то для заряда будет достаточен компенсирующий заряд батареи, который обеспечит постепенное восстановление ее рабочей емкости. Однако при глубоком разряде потребуется применение другого зарядного устройства, способного обеспечить достаточно высокий ток заряда. В случае глубокого разряда и последующей за ним струйной подзарядке может произойти сулъфатация пластин батареи со всеми вытекающими последствиями.

   При таком методе заряда следует также  учесть, что длительный заряд при незначительных колебаниях напряжения заряда существенно снижает срок службы батареи. Поэтому должна быть предусмотрена его стабилизация. Отклонение напряжения заряда от нормы не должно превышать ±1 %. Кроме того, поскольку зарядные характеристики зависимы от температуры окружающей среды, зарядное устройство должно иметь схему термокомпенсации.

   Нельзя  утверждать, что компенсирующий заряд  столь полезен для свинцово-кислотных  батарей, потому что этот метод обычно используют в двух случаях: при их незначительном разряде и для подзарядки заряженных батарей с целью компенсации их саморазряда.

   Для свинцово-кислотных аккумуляторов  недопустим недостаточный заряд, т. к. это приводит к сульфатации отрицательных пластин, недопустим и перезаряд, вызывающий коррозию положительных пластин. При компенсирующем заряде, если он продлится слишком долго, начнется перезаряд батареи и, кроме того, будет происходить выкипание электролита

   Метод плавающего заряда

   Заряд называется плавающим в том случае, если аккумуляторная батарея подключена параллельно нагрузке, и он происходит постоянно. При такой схеме включения особые требования предъявляются к выпрямителю источника питания. Его выходной ток складывается из тока заряда аккумуляторной батареи и тока нагрузки. Нагрузочная способность источника питания должна быть настолько высокой, чтобы его выходное напряжение при максимальном токе нагрузки оставалось практически неизменным. Напряжение плавающего заряда выбирают из расчета 2,23...2,3 В на элемент батареи при температуре 20 "С. При изменении температуры в пределах -30...50 °С оно может изменяться от 2,55 до 2,15В соответственно. Источник питания должен быть стабилизированным, и колебания напряжения не должны превышать 30 мВ на элемент.

   Метод многоступенчатого  заряда

   Зарядное  устройство многоступенчатого заряда производит его в три ступени: заряд постоянным током, основной заряд  и компенсирующий заряд. Заряд постоянным током протекает примерно в течение 5 ч и обеспечивает заряд батареи до 70 % ее емкости, оставшиеся 30 % емкости она "добирает" в течение медленного основного заряда. Основной заряд длится следующие 5 ч, и именно он обеспечивает "здоровье" аккумуляторной батареи. Его можно сравнить с коротким отдыхом после сытного обеда, предшествующего работе. Если батарея зарядилась не полностью, она постепенно начнет терять способность дос

...
Похожие работы:
© 2009-2018 Все права защищены — dipland.ru